SEPTEMBER 2017

NAA IN-CORE NEUTRON MONITORING SYSTEM

INSTALLING A PHOTONIS CFUF43 INCORE FISSION CHAMBER TO CHARACTERIZE UT TRIGA REACTOR STEADY STATE NEUTRON FLUX VARIATIONS FOR NAA APPLICATIONS

CPT MATTHEW B. STOKLEY

Nuclear Medical Science Officer U.S. Army

Graduate Research Assistant Nuclear and Radiation Engineering, The University of Texas at Austin Email: mbstokle@gmail.com Phone: (706)840-0170

Agenda

- Background
- Proposed Solution
- System Design
- Testing
- Results
- References and Special Thanks

Background – UT NAA LAB

- Neutron Activation Analysis (NAA)
- Sensitive method for elemental trace concentration
- Variety of sample types

Detection Limits for NAA	
Detection	Elements
Limit (µg)	
< 0.01	Al, Sb, Ar, As, Br,
	Cs, Co, Cu, Dy, Er,
	Eu, Ga, Ge, Au,
	Ho, In, I, Ir, Kr, La,
	Lu, Mn, Pd, Pr, Re,
	Rh, Sm, Ag, Na,
	Sr, Ti, W, U, V,
	Yb, Y
0.01-0.1	Ba, Cd, Cl, Gd, Hf,
	Hg, Mo, Ni, Os, Pt,
	K, Ru, Sc, Si, Ta,
	Te, Tb, Th, Tm, Xe
>0.1	Bi, Ca, Ce, Cr, F,
	Fe, Mg, Nd, Ne,
	Nb, Rb, Ru, Se, Tl,
	Zn, Zr

Background – Flux Variance

- Steady-State Power Neutron Population Variance
- Comparison Method
 - Certified Standards
 - Longer Processing Times
- Goal
 - Accurate, Real-Time Neutron monitoring for NAA

- Characterization of steady-state reactor neutron flux variance.
- Average flux over irradiation time does not accurately reflect the variance for short irradiation times.
- Neutron Fluence needed.

- Characterization of steady-state reactor neutron flux variance.
- Average flux over irradiation time does not accurately reflect the variance for short irradiation times.
- Neutron Fluence needed.

- Characterization of steady-state reactor neutron flux variance.
- Average flux over irradiation time does not accurately reflect the variance for short irradiation times.
- Neutron Fluence needed.

- Characterization of steady-state reactor neutron flux variance.
- Average flux over irradiation time does not accurately reflect the variance for short irradiation times.
- Neutron Fluence needed.

- Characterization of steady-state reactor neutron flux variance.
- Average flux over irradiation time does not accurately reflect the variance for short irradiation times.
- Neutron Fluence needed.

- Characterization of steady-state reactor neutron flux variance.
- Average flux over irradiation time does not accurately reflect the variance for short irradiation times.
- Neutron Fluence needed.

- Characterization of steady-state reactor neutron flux variance.
- Average flux over irradiation time does not accurately reflect the variance for short irradiation times.
- Neutron Fluence needed.

Proposed Solution

- Photonis CFUF43 Fission Chamber
 - Argon filled Ion Chamber with >90%
 ²³⁵U enriched sensitive layer ~349µg.
 - Sealed Hardened SS Case
 - Diameter: 4.7mm
 - Length: 86mm (30m Cable)
 - Range: 10^{10} - $10^{14} \frac{n}{cm^2 s}$
 - 350°C Maximum Temperature
 - Current Mode Operation

Proposed Solution

- Existing 5/8" hole in the reactor Top Grid Plate.
 - Allows for close monitoring of neutron population surrounding pneumatically inserted NAA samples
- Intended access point for foil and wire neutron flux monitoring.

System Design

- National Instruments LabVIEW
 - Instrument Initialization
 - Data Logging
 - PC/Tablet Readout
- NI GPIB
- Keithley 6487
 - Power Supply/Picoammeter
- Junction Box
 - Single BNC Coaxial HV / Signal

System Design

- Holder
 - Mobile
 - 6061 T6 Aluminum
 - Length: 16 Inches
 - 14.09 inches in core
 - 13.94 Inches to Fission Chamber Base
 - Diameter: 0.5 Inch
 - 0.14 inch wall thickness
- Sensitive Volume 1.06 inch
 - Self Alignment Spring
 - 12.27-13.33 Inches in core
 - Pneumatic sample center @ 12.8"

Testing

- Sulfur Flux Monitors
 - Activation of $^{36}\mathrm{S}$
 - ³⁷S: 3103.37 keV
- Irradiation
 - 950 kW
 - 10 Seconds
 - Multiple Monitors
- All Results Normalized for comparison.

Results

Results

Future Work

- NI PXI Platform
- Fast NAA Pneumatic System
- Improved Timing
- Automation

References

- Landsberger, S., & Dayman, K. (2013). Monitoring of neutron flux changes in short-lived neutron activation analysis. *Radioanalytical Nuclear Chemistry*.
- Photonis SAS. (2015). *CFUF 43/30 Fission Chamber: Specification Sheet*. Brive, France: Photonis.

Special Thanks to Dr. Steven Biegalski, Dr. Edward Artnak, and UT Nuclear Engineering Teaching Laboratory Staff.

QUESTIONS?