

MIT NUCLEAR REACTOR LABORATORY

an MIT Interdepartmental Center

Technical Analysis and Administrative Issues of Criticality Study for Different MITR Facilities

Kaichao Sun, MIT-NRL

Group Leader – Reactor Physics, Research Scientist, Reactor Engineer, Criticality Officer

TRTR 2017 Meeting, San Diego, 09/18/2017

MIT Research Reactor (MITR)

- Part of interdepartmental Nuclear Reactor Laboratory
- Built on the MIT campus in 1958, upgraded in 1976
- > 6 MW_{th} the 2nd largest university reactor in U.S.
- Light water-cooled, heavy water-reflected
- Operates 24/7, up to 10-week cycles

Code System

MITR Modeling & Fuel Management

- Extensive experimental validations
- > Criticality (shim bank height) search
- Tracking rhomboid-shaped fuel elements being rotated and/or flipped

Power Distribution in MITR Core

MITR Modeling & Fuel Management

- Extensive experimental validations
- > Criticality (shim bank height) search
- Tracking rhomboid-shaped fuel elements being rotated and/or flipped

Power Distribution in MITR Core

- During recent years, U.S. Nuclear Regulation Commission (NRC) enhances the criticality safety regulations, emphasis being placed on the validation requirements for the corresponding neutronics calculations.
- In the past two years, there are four criticality studies being required to the Criticality Officer for analyzing multiple MITR facilities with fissionable material involved:
 - I. Wet Storage Systems (Spent Fuel Pool and Wet Storage Ring)
 - II. Special Nuclear Material Vault
 - III. Exponential Graphite Pile (Storage and Operation)
- Most existing criticality reports (if there is any) for the above mentioned facilities are out dated and lack of sufficient technical details
- There are needs to perform up-to-date calculations for the license renewal (and/or accommodate the new regulation requirements)

 Technical: There is a clear trend that NRC pushed to implement neutronics validations for the calculation results, where newer versions of ANSI/ANS Standards (Series 8) is particularly requested to be followed. <u>How other Research Reactors accommodate this request?</u>

 Administrative: At least at MITR, there is no specific/clear funding source supporting criticality safety analysis and validation report. <u>How other Research Reactors solve the financial issue?</u>

- 1. Wet Storage Systems (Spent Fuel Pool and Wet Storage Ring)
- 2. Special Nuclear Material Vault
- **3. Exponential Graphite Pile** (Storage and Operation Configurations)

<u>All cases shall satisfy the MITR technical specifications, i.e., k_{eff} shall be less than 0.90 (NRC limit is 0.95) with sufficient safety margins, by considering double contingency – typically over (or double) batching and light-water flooding.</u>

Wet Storage Systems

- NRC issued a Generic Letter, asking reactors to address degradation of neutron-absorbing materials in wet storage systems for reactor fuel
- We were trying to demonstrate our wet storage systems are able to maintain sub-criticality without any neutron-absorbing materials

Wet Storage Ring – Modeling

- No neutron-absorbing materials

 (i.e., cadmium liners for the MITR case)
 are included in the MCNP model.
 This is a very conservative assumption,
 since it is highly unlikely that
 cadmium is degraded to zero level.
- 2) No structural components, such as depleted shim blades, metallic racks, storage containers, and etc., are taken into account. There is only full density (room temperature) light-water surrounding the fuel elements in the MCNP model. This is also a conservative assumption, since it will result in higher k_{eff}.
- All fresh fuel elements are used in the calculations. Such an approach is again on the conservative side, since additional fissile materials are included.

Results: 0.70496 ± 0.00060

Spent Fuel Pool – Modeling

	Loading Configurations	Results	Pitch (p)	Results		
Light	25 – Full Fuel Elements Loading	0.96533 ± 0.00057	11.0 cm	0.81219 ± 0.00070		
Water	24 – 1 Central Element Out	0.90794 ± 0.00057	11.5 cm (Ref)	0.77633 ± 0.00057		
	23 – 1 Central + 1 Neighboring Elements Out	0.82360 ± 0.00057	12.0 cm	0.74265 ± 0.00058		
+	21 – 1 Central + 3 Neighboring Elements Out	0.82267 ± 0.00062				
	21 – 0 Central + 4 Neighboring Elements Out	0.78881 ± 0.00057	Distance (d)	Results		
	20 – 1 Central + 4 Neighboring Elements Out	0.77633 ± 0.00057	60.0 cm	0.77678 ± 0.00042		
	13 – 12 Corner Elements (3 each) Out	0.87151 ± 0.00061	48.0 cm	0.77933 ± 0.00065		
Concrete	9 – Form a 3×3 Square	0.82541 ± 0.00068	42.0 cm (Min)	0.81340 ± 0.00074		

Special Nuclear Material Vault

- > Special nuclear material inventory started to build-up since 1960s.
- No criticality safety analysis was required for the past several license renewals (every 10 years) until the most recent one in 2016.

SNM Vault – Modeling

Exponential Graphite Pile

Fuel Slug Storage – Modeling

Graphite Pile – Modeling

"Front Faco" (Vortical Cross soction	"Eropt Eaco" (Martical Cross saction) "Sida Eaco"					
FIGHT FACE (VEITICAL CLOSS-SECTION	•••	Side Fa		Reference Case	0.84821 ± 0.00014	
				100% Graphitization	0.84149 ± 0.00014	
Air				H ₂ O Flooding Scenario	0.85576 ± 0.00013	
				D ₂ O Partial Flooding	0.87668 ± 0.00014	
					Ground Level	
Concrete					Concrete	

Neutron Doses – Pedestal Source

- A 10-curie Pu-Be source loaded at pedestal channel
- At 30 cm from pile surfaces, total radiation level < 1.0 mrem/h</p>

Neutron Doses – Central Source

- a 10-curie Pu-Be source loaded at graphite pile center
- At 30 cm from pile surfaces, total radiation level < 4.0 mrem/h</p>

	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12
11																									
10		0.064		0.137		0.208		0.271		0.321		0.348		0.347		0.318		0.267		0.204		0.134		0.062	
9																									
8		0.137		0.296		0.452		0.596		0.710		0.775		0.773		0.704		0.587		0.444		0.291		0.134	
7																									
6		0.208		0.454		0.700		0.939		1.141		1.258		1.254		1.130		0.925		0.688		0.444		0.204	
5																									
4		0.275		0.603		0.946		1.300		1.621		1.822		1.815		1.601		1.276		0.926		0.589		0.268	
3																									
2		0.328		0.728		1.162		1.638		2.107		2.424		2.413		2.078		1.603		1.133		0.709		0.320	
1																									
0		0.361		0.805		1.299		1.866		2.456		2.935		2.909		2.416		1.821		1.264		0.783		0.351	
-1													*												
-2		0.368		0.817		1.317		1.888		2.481		2.959		2.932		2.441		1.843		1.282		0.795		0.357	
-3																									
-4		0.347		0.766		1.217		1.707		2.183		2.504		2.493		2.153		1.671		1.187		0.746		0.338	
-5																									
-6		0.307		0.670		1.042		1.419		1.756		1.964		1.956		1.736		1.395		1.020		0.654		0.300	
-7																									
-8		0.256		0.552		0.843		1.117		1.344		1.475		1.471		1.332		1.102		0.829		0.542		0.251	
-9																		JI							
-10		0.205		0.436		0.655		0.850		1.003		1.087		1.085		0.996		0.841		0.646		0.429		0.202	
-11														J											
-12		0.168		0.349		0.518		0.662		0.770		0.829		0.827		0.766		0.656		0.511		0.344		0.165	

Summary: Several criticality safety analyses for MITR facilities have been presented. All cases satisfy MITR technical specifications, i.e., k_{eff} less than 0.90 (NRC limit is 0.95) with sufficient safety margins, by considering double contingency.

- Technical: There is a clear trend that NRC pushed to implement neutronics validations for the calculation results, where newer versions of ANSI/ANS Standards (Series 8) is particularly requested to be followed. <u>How other Research Reactors accommodate this request?</u>
- 2. Administrative: At least at MITR, there is no specific/clear funding source supporting criticality safety analysis and validation report. <u>How other Research Reactors solve the financial issue?</u>

Questions?