DEVELOPMENT OF A FUEL TRANSFER CASK AT THE UNIVERSITY OF TEXAS TRIGA REACTOR

P. M. Whaley, G. R. Kline, E. J. Artnak

INTRODUCTION

- A 3-element transfer cask fabricated for BMI shipping cask at initial
 UT TRIGA core load
- Subsequently used as the facility fuel transfer cask
- Workable, but vulnerable

Three-Element Basket Operations

- Rigging interference (loading/unloading)
 - Chain lowered & shifted for fuel tool access
 - Potential instability (swing or tip) during lift operations
- Lifting fuel in air to storage

Resource Intensive

- 3 (minimum) pool side
- 2 on scaffolding
- 1 at storage well
- 2 fuel tools

Vulnerabilities

- Inadequate Shielding
 - No top shielding
 - Minimal side shielding
 - Everyone in bay shelters
- Operations from scaffolding
 - Increase distance from source
 - Still significant exposure
 - Stability & fall protection
- Cask to storage
 - Rigging operations close to cask
 - Scaffolding exposure

Department of Defense 6th Civil Support Team

Sample of Doses During Defueling (3 element cask)

PROPOSAL FOR IMPROVEMENT

- After seeing the process it was decided to see if we could fit into the bellows repair timeline acquisition of a more suitable cask with:
 - Rigging clearance for the fuel handling tool
 - Bottom access (loading/unloading)
 - Better shielding
- Reduce resource requirements
 - Scaffolding
 - Need for 2 fuel handling tools

Development Process

- Specify design considerations/strategy
- Identify potential for vendor support
 - Cost estimate
 - Timeline
- Evaluate shielding material
- Purchase
 - Cask structure
 - Cask hardware
 - Shielding material
- Assemble cask and shielding

Design Considerations

- Fabrication from off-the-shelf components
 - Constrain cost
 - Minimize manufacturing time
- Weight limited to pallet jack capacity
- Assembly/installation process timeline

Conceptual Design

Final Design

Final Design Wireframe View

Final Design Drawer Detail

Isometric, Exterior View

Isometric Cut View

FABRICATION

- Approximately 1 week delivery
- Acceptable cost estimate
- Iteration with the shop:
 - Assure acceptable safety factors
 - Improve fabrication

Internal Structure

Shell

Completion and Delivery

Receipt

HOLD POINT: CAPABILITY TEST

- General sanity check, prior to shielding load
- Provide staff opportunity to develop & test

FINAL HARDWARE DEVELOPMENT

- Drawers
 - Beveled hole
 - Fuel end fitting
- Top plug
- Stainless steel liners
- Self centering guide

Drawer Installation

- Surface smoothness was not specified Fabrication/welding warped surface
- Drawer openings required work

Drawer Action

SHIELDING MATERIAL

- Options
 - Cast in place lead
 - Lead Shot
 - Steel shot (rejected)
 - High density concrete (nuclear vendor)
- Comparisons
 - Shielding effectiveness
 - Cost
 - Weight
 - Installation process

Calculations

- SCALE (KENO/ORIGEN) source term (25%, 7 d)
- MCNP for shielding
 - High density concrete
 - Lead
 - Lead shot (70% density)

Calculated Dose Rates (mrem/h)

	CONCRETE	LEAD	LEAD SHOT
Top Surface	2	<1	~1
Bottom Surface	2.3	<1	~1
Side Surface	449	32	50
1 ft. (Area tally)	239/336	23/34	35/50
1 ft. (Surface tally)	244/314	23/39	35/60

- Lead Shot ~70% of lead
- Upper & lower surfaces simplified
- Processing for shot simple

Shielding Configurations

- Bulk shielding
 - Lead shot (reclaimed lead)
 - Sealed and stabilized polymer

- Total weight less than 4500 lbs (~3600 lbs)
- Top plug & drawer manufactured separately
 - Financing consideration
 - Stainless steel

Drawer & Plug Shielding

- Drawer & top plug shells
 - Not closed volumes
 - Difficult to stabilize
 - Melted in place
- Lead
 - Melt temp 327 °C
 - Boiling point 1750 °C
 - Temp < 500 °C
- Heat deformation

Sealing

Video Guidance: Very Difficult

Utilization Dose Rates (mrem/h)

- MCNP Calculations
 - 70% nominal lead density
 - 6" from side surface*
 - Top & Bottom (oversimplified) Contact
- Measured 6" dose rates
- Surface dose rates
 - Maximum 135 mrem/h
 - Minimum 3.6 mrem/h

FOUR-ELEMENT DOSE RATES					
POSITION	CALC	MEAS			
ТОР	0.38	4			
SIDE 1	78	38 ¹			
SIDE 2	56	25 ²			
BOTTOM	0.07	19			

NOTE 1: Average at 0°, 90°, 180°, 270° NOTE 2: Average at 45°, 135°, 225°, 315° Department of Defense 6th Civil Support Team

• Exterior Cumulative Dose during Refueling background

Movement to Poolside

Into the Pool

In the Pool

Conclusions & Lessons Learned

COMPARISON FUEL TRANSFER TO STORAGE AND CORE RELOAD

	Units	BTB ^[1]	BOT-C ^[2]
Radiation Protection			
Total exposure	mrem	669	186
Maximally exposed worker	mrem	219	72
Dose rates (cask surface)	mrem/h	Est 500K	3.6-135
Dose Rates (bay)	mrem/h	35 (@ 20')	4-40 (@ 6")
Max Dose Rate (outside)	mrem/h	8.7	Bkg
Process			
Required Staffing	Persons	7	2
Required fuel tools	No.	2	1
Time per element	Minutes	8.3 (3 ele.)	<2.5 (4 ele.)

BMI Transfer Cask/Basket
 Bevo Orange Transfer Cask

Total Cost

- Cask shell
- Protective finish
- Drawer and plug shells
- Lead
- Misc.

\$3500 (10% UT Discount) \$2000 \$1500 \$4975 \$1200

CONCLUSIONS & LESSONS LEARNED

- Quick fabrication by design
 - Simple construction
 - Standard pipe dimensions
 - Interaction with fabricator
 - Lots of feedback and discussion
 - Updated design based on fabrication requirements
- Safer, faster, better fuel handling process

LESSONS LEADRNED: WHAT WE'D DO DIFFERENTLY

- Drawer fabrication by same shop as cask
- Solid stainless steel plugs and drawers
- Cask wells/storage spaces:
 - Stainless steel
 - Seamless
 - Optimized pitch

EXTENSION: SURPRISES

- 50.59 Review
 - The Safety Analysis Report does not contain any information or reference to fuel handling hardware
 - Transfer mechanism
 - Fuel tool
 - Process
 - Facility procedures do not reference fuel handling hardware

LESSONS LEARNED/ISSUES

- Bottom drawers
- Cask well/storage spaces
- Drains
- Finish

Drawer Issues

- A design revision
 - removed a drawer stop
 - not identified in review
 - required compensation
- Drawer fit
 - Internal cask surface warp
 - Melting lead warped drawer surfaces

Cask Well Issues

- Well tubing seams had to be ground.
- Need for liners was an afterthought
- Stainless steel liners difficult to expand (muffler tools)

Drain Issues

• Stainless steel liners

- Terminated above the polymer seal

- Drains had to be cut
- No drawer drains

May be installed later

Finish Issues

- Applied immediately following fabrication
- Drawers fabricated separately and later
- Machining the cask so drawers fit damaged finish and required rework

Long Term Lead Shot Settling

- Lead shot may settle
- Polymer seal may dimple
- Fix:
 - Add shot
 - Replace seal