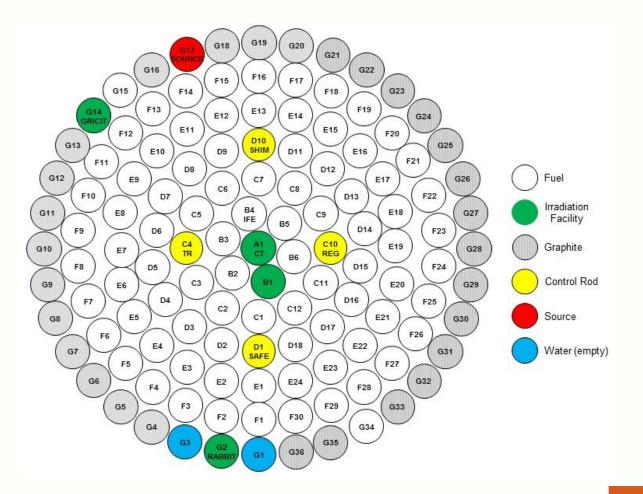


Criticality Modeling of the Oregon State TRIGA Reactor Utilizing the MCNP6 BURN Option Robert Schickler

History


- OSTR MCNP model originally written by Kanokrat Tiyapun in 1997 in support of boron neutron capture therapy research
- OSTR converted from HEU to LEU in 2008
- 1997 MCNP model was used for various analyses in support of LEU conversion
 - Accurately predicted critical mass (predicted 69 FEs, actual was 67 FEs)

Orea

- Accurately predicted control rod worth:

Control Rod	Measured Rod Worth [\$]	MCNP5 Predicted Rod Worth [\$]
Shim Rod	2.76 ± 0.14	2.55 ± 0.16
Safety Rod	2.66 ± 0.13	2.60 ± 0.16
Regulating Rod	3.71 ± 0.19	3.36 ± 0.19
Transient Rod	2.86 ± 0.14	2.86 ± 0.15
Sum of all Rods	11.99 ± 1.68	11.37 ± 0.33

Current OSTR Core Configuration

Oregon State

Motivation

- MCNP model needs to be updated in support of future projects, such as medical isotope production
- No longer accurate due to 8 years of fuel burnup and changes to the facility (new reflector/Rabbit facility installed in 2013)
- Using fresh fuel isotopics with actual critical rod height data from December 2013 yielded excessive reactivity:

Core Configuration	Power	k-effective	Reactivity
Normal	15 W	1.01343	\$1.77
Normai	1 MW	1.01068	\$1.41
	15 W	1.01307	\$1.72
ICIT	1 MW	1.00959	\$1.27
CLICIT	15 W	1.01266	\$1.67
CLICIT	1 MW	1.00915	\$1.21

Motivation

Improvements to the original MCNP model

- Updated material cards from ENDF/B-VI cross section libraries to ENDF/B-VII.1
- Updated fuel material cards using information from CERCA, with spectrometric data that greatly improved atomic fraction accuracy
- Modeled OSTR at low power (15 W) using .80c cross sections and full power (1 MW) using mostly .81c cross sections for incore materials that would experience approximately 300°C

MCNP Burn Option

JRN	TIME=260	←T	ime st	ep in c	lays								
	PFRAC=1.0) ← F	ractior	n of po	wer (1	00%)							
	POWER=1	← P	ower i	n MW									
	MAT=5401	5402	5403	5411	5412	5413	5421	5422	5423	5431	5432	5433	
	5441	5442	5443	5451	5452	5453	5461	5462	5463	5471	5472	5473	← Each number
	5481	5482	5483	5491	5492	5493	5501	5502	5503	5511	5512	5513	represents one-
	5521	5522	5523	5531	5532	5533	5541	5542	5543	5551	5552	5553	third of a fuel
	5561	5562	5563	5571	5572	5573	5581	5582	5583	5591	5592	5593	element
	5601	5602	5603	5611	5612	5613	5621	5622	5623	5631	5632	5633	
	5641	5642	5643	5651	5652	5653	5661	5662	5663	5671	5672	5673	
	5681	5682	5683	5691	5692	5693	5701	5702	5703	5711	5712	5713	
	5721	5722	5723	5731	5732	5733	5741	5742	5743	5751	5752	5753	
	5761	5762	5763	5771	5772	5773	5781	5782	5783	5791	5792	5793	
	5801	5802	5803	5811	5812	5813	5821	5822	5823	5831	5832	5833	
	5841	5842	5843	5851	5852	5853	5861	5862	5863	5871	5872	5873	
	5881	5882	5883	5891	5892	5893	5901	5902	5903	5911	5912	5913	
	5921	5922	5923	5931	5932	5933	5941	5942	5943	5951	5952	5953	
	5961	5962	5963	5971	5972	5973	5981	5982	5983	5991	5992	5993	
	6001	6002	6003	6011	6012	6013	6021	6022	6023	6031	6032	6033	
	6041	6042	6043	6051	6052	6053	6061	6062	6063	6081	6082	6083	
	6091	6092	6093	6101	6102	6103	6111	6112	6113	6121	6122	6123	
	6131	6132	6133	6141	6142	6143	6151	6152	6153	6161	6162	6163	
	6171	6172	6173	6181	6182	6183	6191	6192	6193	6201	6202	6203	
	6211	6212	6213	6221	6222	6223	6231	6232	6233	6251	6252	6253	
	6261	6262	6263	6271	6272	6273	6301	6302	6303	6321	6322	6323	
	6331	6332	6333	6341	6342	6343							
	BOPT=1.0	24	- Dete	ermine	s whic	ch fissi	ion pro	oducts	outpu	t			Oregon Sta

5

Basic procedure for burnup calculations

- Determine a starting point
 - Use critical rod height data from reactor operation (as close to "cold, clean core" as possible)
- Perform a burnup calculation for a determined amount of time based upon power history (power logs)
 - I coincided each time step to our annual control rod calibrations
- After the burnup calculation is complete, depleted fuel isotopics must be parsed from the large (70 MB of text) output file then reinserted into the original deck
- Control rod heights must be changed to reflect the new core

Step 1 – Refine model to reflect fresh fuel core conditions in 2008

- Challenge Reflector was filled with water, which altered reactivity
- Allyson Kitto's 2012 thesis determined reactivity bias of reflector by changing reflector material: "sweet spot" was 70% graphite, 30% water
- Using this reflector material, as well as accurate fuel isotopics from CERCA, and actual critical rod data at low power (15W) and full power (1 MW) yielded the following reactivity values:

Date	Core Configuration	Power	k-effective	Reactivity
	Normal	15W	1.00031	\$0.04
2008	NOITIAI	1MW	1.00083	\$0.11
	ICIT	15W	1.00096	\$0.13
		1MW	1.00121	\$0.16
	CLICIT	15W	0.99977	-\$0.03
	CLICIT	1MW	0.99992	-\$0.01

Step 2 – Perform burnup of fuel from 2008 to 2013

- From power history, fuel experienced approximately 260 MWdays of burnup
- One 260 day time step was performed to burn fuel
- Challenge sacrifice accuracy for time efficiency
 - Burnup calculation is a slow process
 - A calculation using only one time step took 8.5 days to run using 50,000 neutrons per cycle
 - Burnup is currently unable to utilize multi-threading/MPI
 - OSTR has multiple core configurations, but over 90% of operations are performed in one configuration (CLICIT), so burnup calculation was performed in this configuration
 Oregon Sta

8

Step 2 – Perform burnup of fuel from 2008 to 2013

 After burnup calculation is completed, the resulting depleted fuel isotopics are re-inserted into the model, reflector was changed to non-water-filled, Rabbit was changed to titanium, and critical rods heights from December 2013 were used to determine criticality

Date	Core Configuration	Power	k-effective	Reactivity	Fresh Fuel Reactivity
	Normal	15W	1.00115	\$0.15	\$1.77
	Normal	1MW	0.99961	-\$0.05	\$1.41
2013	ICIT	15W	0.99966	-\$0.05	\$1.72
		1MW	0.99886	-\$0.15	\$1.27
		15W	0.99928	-\$0.10	\$1.67
	CLICIT	1MW	0.99743	-\$0.34	\$1.21

Step 3 – Perform burnup of fuel from 2013 to 2014

- From power history, fuel experienced approximately 44.5 MWdays of burnup, thus one 44.5 day time step was performed
- Resulting fuel isotopics were again inserted into the model and benchmarked against critical rod heights in 2014:

Date	Core Configuration	Power	k-effective	Reactivity
	Normal	15W	1.00004	\$0.01
	Normal	1MW	0.99926	-\$0.10
2014	ICIT	15W	1.00015	\$0.02
		1MW	0.99889	-\$0.15
	CLICIT	15W	1.00046	\$0.06
	CLICIT	1MW	0.99884	-\$0.15

Step 4 – Perform burnup of fuel from 2014 to 2015

- From power history, fuel experienced approximately 56.8 MWdays of burnup, thus one 56.8 day time step was performed
- Resulting fuel isotopics were again inserted into the model and benchmarked against critical rod heights in 2015:

Date	Core Configuration	Power	k-effective	Reactivity
	Normal	15W	1.00081	\$0.11
	Normal	1MW	0.99958	-\$0.06
2015	ICIT	15W	1.00137	\$0.18
		1MW	0.99924	-\$0.10
	CLICIT	15W	1.00085	\$0.11
	CLICIT	1MW	0.99842	-\$0.21

Results

- The end result is a model that appears to be a far more accurate representation of the state of the OSTR
- Uranium/plutonium buildup and depletion can now be tracked
- A power-per-element history can be produced to show how power changes throughout the core over core life
- Burnup calculations will be performed every year to keep the model as accurate as possible

Future Work

Now that the fuel isotopics are more accurate, various analyses are planned:

- Core optimization is currently being analyzed, with potential fuel shuffling to optimize the efficiency of in-core irradiation facilities
- Current project being explored is a 2nd CLICIT irradiation facility on the core periphery
 - Initial numbers indicate flux is 3-4 times lower on the core periphery, but this is acceptable for short irradiations

Acknowledgments

- Dr. Kanokrat Tiyapun for writing the original MCNP model
- Allyson Kitto for her help with determining reflector bias
- Tommy Holschuh for help with Perl script writing for parsing
- Drs. Mike Fensin and Forrest Brown at LANL for assistance with understanding how to use the MCNP burn option