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Design Criteria

 Meet the NRC RAI criteria of the UT 2016 relicensing
e Accurate 1D, transient CFD model, with reasonable solution time
* Expandability to other TRIGA reactor configurations

Pin Temperature vs Position through Time

* Open source approach

* Repeatability and versatility
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General Parameters

* Limiting core configuration based on
critical heat flux ratio of 2.0

* Instantaneous scram and loss of coolant
e Radial one-dimensional model
 Area of maximum axial heat flux

* Decay heat IAW Kansas State decay
curve|[2]

* Initial power and channel air
temperatures varied IAW VnV
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UT LOCA Model: Geometry

* Fuel dimensions IAW UT Technical
Specifications[1]:
 8.5% wt. 19.7% enriched U
Zr:Hof 1.6
0.020” (5.08e*m) cladding thickness
~0.005” (1.97e>m) gas gap

1” active fission region, representing maximum
segment

L VAR

* Air channel width based on hexagonal
geometry and symmetry
* Symmetrical channel flow
* Constant radial velocity
* Constant axial velocity




UT LOCA Model: Geometry, Axial

* Axial modelling slice is taken at the
region of maximum relative axial C D
peaking factor of 1.2

* This was considered for the pin with T
the highest radial peaking factor | 7"
* The segment height is relative to the 15" T 2 B dy = 1" (0254m); Region of Analysis

axial peaking factor curve subdivisions

(15) N
Relative Axial Peaking Factor
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UT LOCA Model: Geometry, Radial

 The model is a 1D radial layout[10]

* d@ is 2m Radians around
* dy is based on peaking factor slice
* dXx,qdial iS S€t to accommodate Biot number

e dr is set to allow volume calculations for
transient analysis portion and is (2n-1) times
the length of dx, 4441

* Axial peaking factor is 1.2

» Radial peaking factor IAW polynomial curve fit
from TRACE data and volumetric correction

* dgenssr = 9Qmax "’ CI(T) - dy - (rZi2 - rZi—Zz)

e CI(T) = Caxial'peakqmax(247192r3 - 53777'2 +
45.882r+ .7335)
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UT LOCA Model: Steady State Finite Element
Analysis (FEA)

e Establish a SS initial temperature profile at t°~ just prior to LOCA
* Water cooled constant element power

 Basis for FEA is elemental energy balance[4]:
° Est_Egen+Eln Eout -
dT
*p-V-cy ¢ Ygen T qcond T Geonv

* For the steady state analysis Est 0; and in FEA energy is always
considered coming into each element = E,,; = 0;

* Thus the energy balance becomes:
: Ein + Egen =0



UT LOCA Model: Steady State Finite Element
Analysis (FEA)

* Energy is transferred via conduction with

all but the outer radial element
* |t contains a convection term as well
* Gas layer is considered conductive

e Radially corrected conduction term[3,4]:
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* Final element exposed to fluid contains
convection|[3,4]::

* Aconv,ss — hwater " Tmax' dy .

(Ts o Tinf) Ti—4 T; Ti+q
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UT LOCA Model: Steady State Finite Element
Analysis (FEA)

e Set up a matrix format for solution[10]

* A invertible matrix represents temperature dependent items
* X vector represents the radial temperature array

- b vector represents temperature independent items
c Ax=b=x=A"1b;
* Example of a row of A:

® ai p—
2--dy-kfyei(gas,clad) (Ti-1—Ti) . (Z’R’d}"kfuel(gas,clad)-(Ti—l_Ti) 4 Z'n'dY'kfuel(gas,clad)'(T@

e — — —
ln( 2i 1) ln( 2i 1) ln( 21+1)
r2i-3 r2i-3 r2i-1




UT LOCA Model: Transient FEA

* The effects of mass, specific heat, and energy absorption can no
longer be ignored|3,4]

* Time must be iterated and is done so explicitly; thus the equation
becomes:

a1 _
At = Qcond T Qconv T qgen

* p¥c,
* The time dependent temperature equation becomes:

At p
pvc, [ai] + Ti

. TPT1 _
T, =



UT LOCA Model: VnV

* The steady state model needed geometric validation based on the
Biot number|3,4]:

¢ Bi= =*

* The transient model needed geometric and time dependence

validation found through the Fourier number:

a-t
® FOZL—
C




UT LOCA Model: VnV

Steady State, IC VnV with LOCA, TRACE
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Transient VnV with LOCA, TRACE, and Real RX Ops
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UT LOCA Model: Air Channel

* Prior to parametric variation, an order of

magnitude estimate of maximum air
temperature in the channel was asked for[10]
e 1D vertical model incorporating iterated energy \/?
. . u .
addition from a constant surface temperature Tsu@ ‘”
to air T ..
..... - T mf,L+R
A Afiow
fTb v
TN .
S~ Tinsi
----- - T " T
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UT LOCA Model

* The model outputs the
cladding temperature
vs. time for the entire
transient.

* The model was run
long enough to find
the maximum
temperature and
ensure a proper trend.

. Results

CLADDING TEMPERATURE VS TIME FOR FUEL ELEMENT POWER OF 23KW
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UT LOCA Model: Parametric Variation

* The model was varied, using
an in-house script, across a
range of temperatures and
fuel element powers

* 16°C - 600°C .
e 12.5kW = 27kW




UT LOCA Model: Parametric Variation

* By using 950°C cladding maximum
temperature as a criteria, a region of
safety is developed [10]

* This shows the maximum allowable
inlet air temperature for a given
specific element power in order to not
exceed the safety limit

* The maximum fuel element power

for nominal bay temperature of
16°Cis 23.6kW

* The maximum allowable air
temperature for a nominal fuel
element power of 12.5kW is 402°C
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Appendix




UT LOCA Model: Output

Pin Surface Temperature vs Time for Air at 16 C and Pin Power of 12.5 kW
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dy = 1" (.0254m); Region of Analysis

Relative Axial Peaking Factor
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