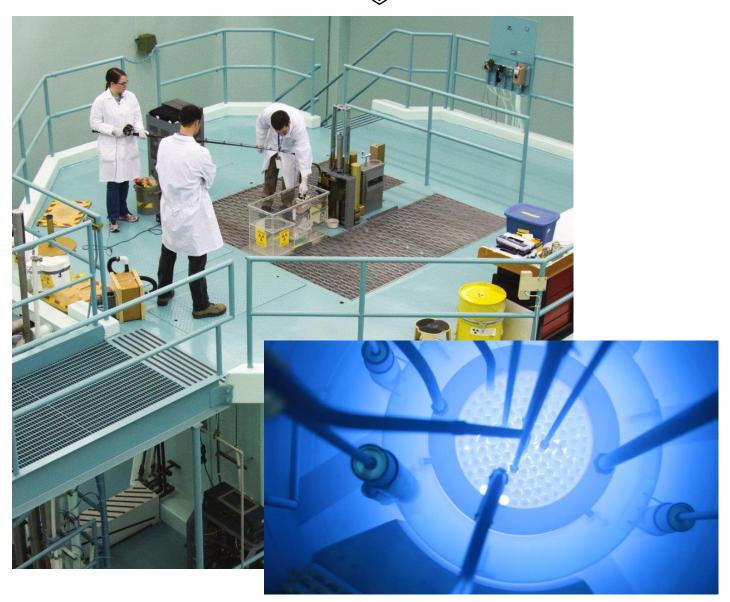


Development of Graphical User Interface Status Board and Control Rod Calibration Software in Python for the Oregon State TRIGA Reactor

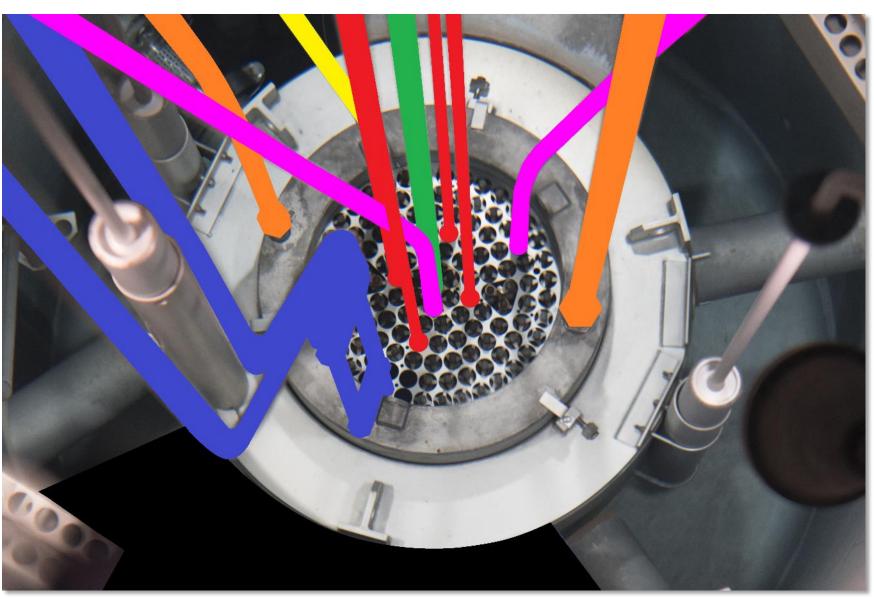
Griffen Latimer

Monday, October 29th, 2018



Part I: Status Board

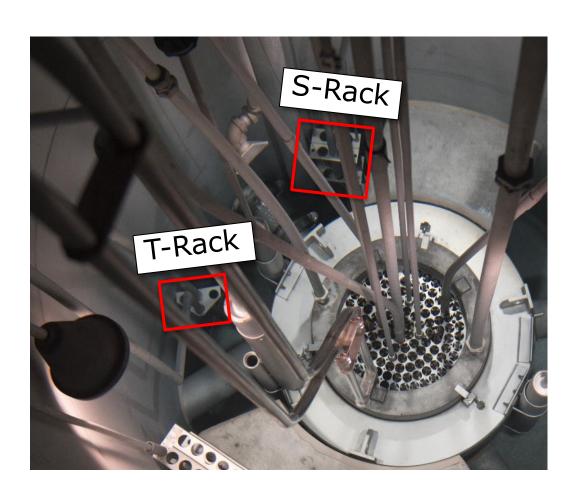
Oregon State TRIGA Reactor

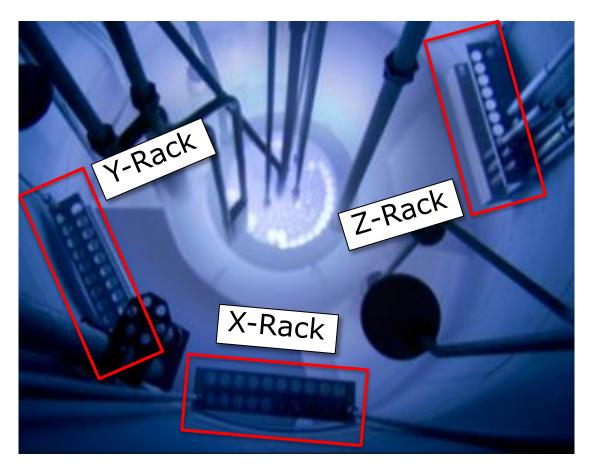

- 1 MW_{th} MkII TRIGA
- In the previous year operated 1579 hours, producing 60 MWd
- 1,143 samples irradiated in-pile
- Numerous customers, irradiation facilities


Oregon State TRIGA Reactor

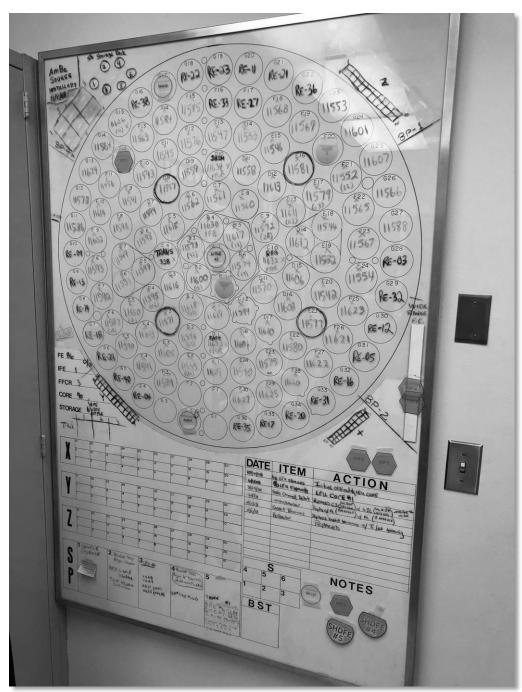
- CLICIT/CLOCIT
- ICIT
- Control Rods
- Rotating Rack
- Thermal Column
- Central Thimble
- Rabbit

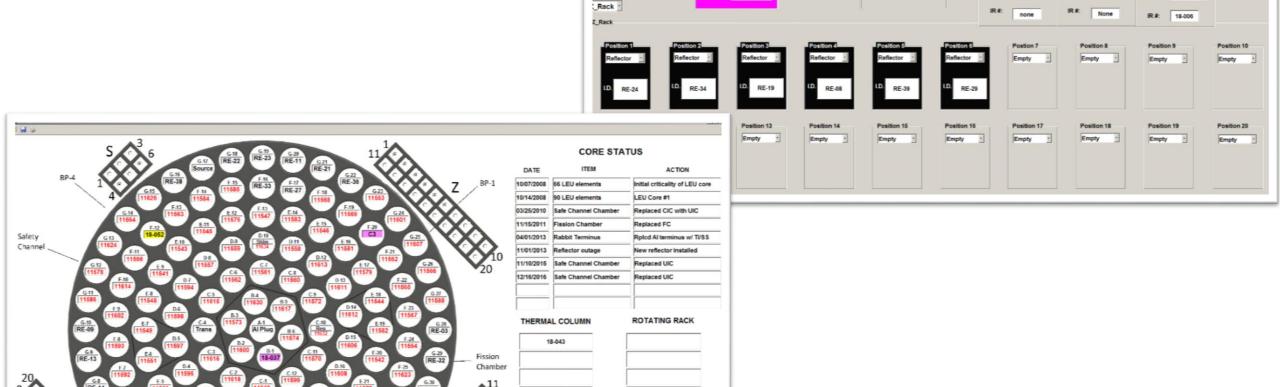
Sample Storage








Tank Storage



NOTES

Control Rod Adapter Holes: D3, D8, E16, E21

Sample Storage

Rx Top ...

Rx Top Cave 18-022/023/024

18-035

18-038

18-033 18-034 18-049

18-051

18-050

Empty

Name: EMPTY

CLICIT#4

EMPTY

Name: CLICIT#1

Position 5

UPPER EMPTY

LOWER EMPTY

UPPER Large

IR#: 17-230

LOWER Small

UPPER Large

LOWER Large

LOWER Large

UPPER Large

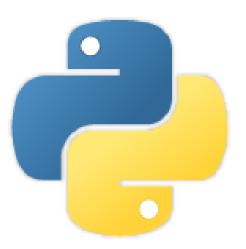
LOWER Large

IR#: X factor

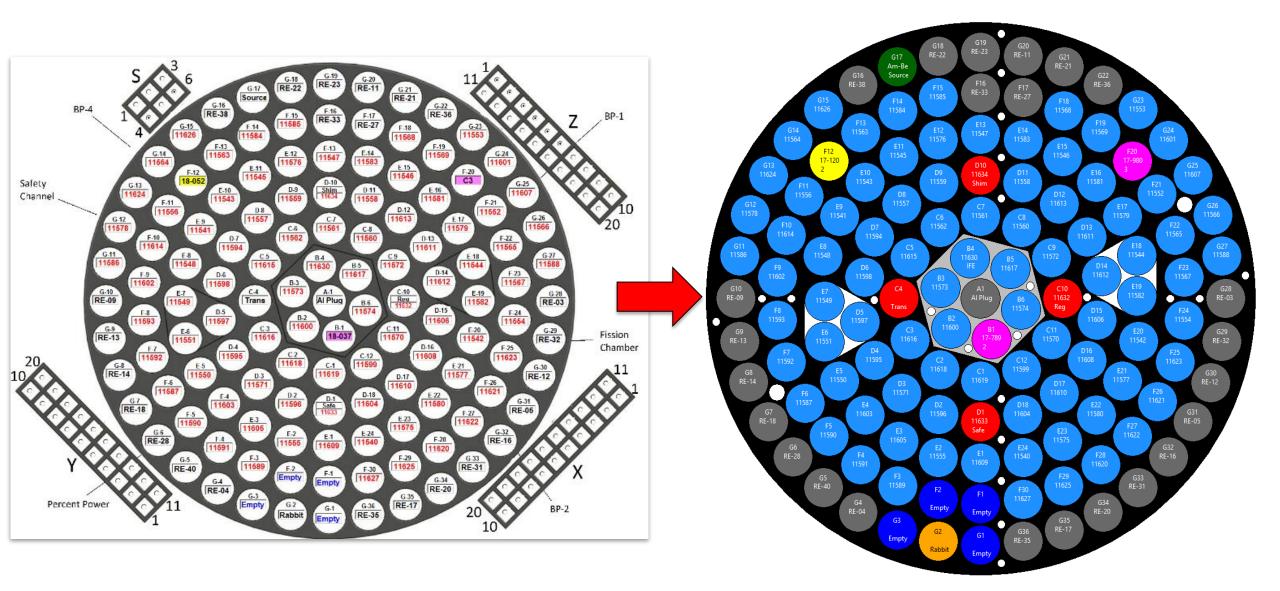
IR#: X-Factor 1

UPPER EMPTY

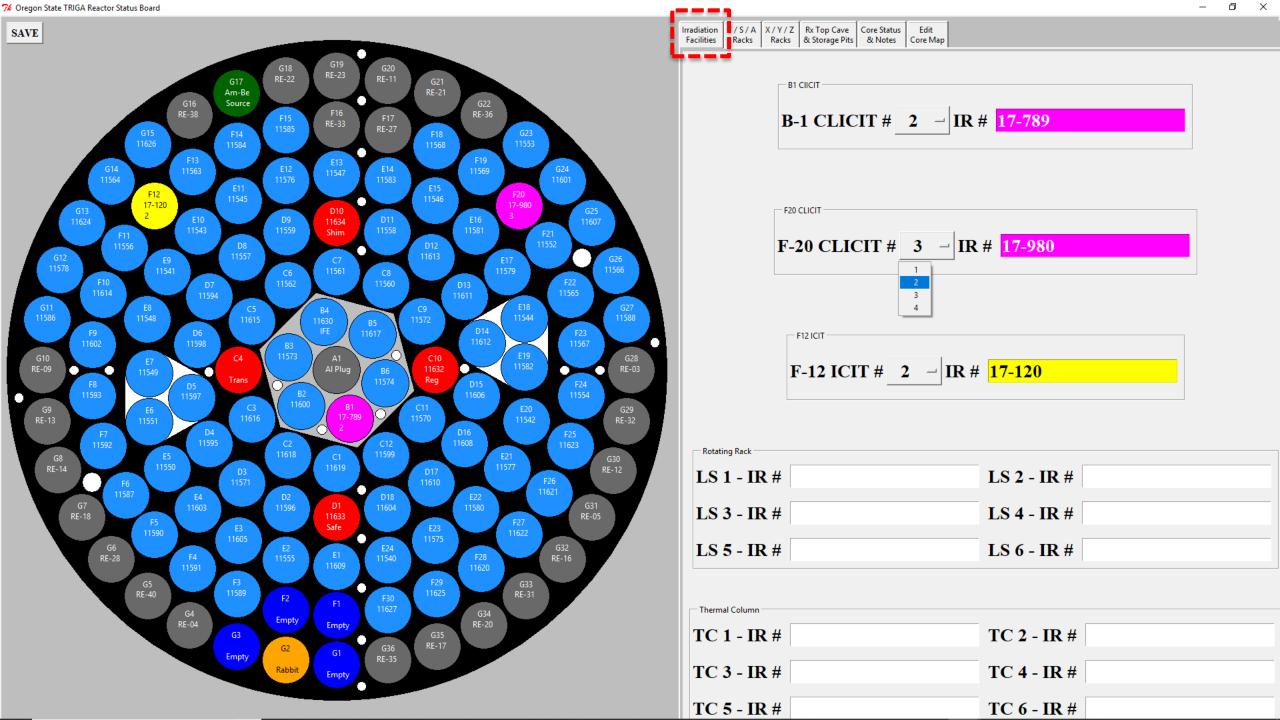
LOWER Small



Python and Tkinter


- Free
- Large user base
- Modules added as needed
- Object oriented

```
1 from Tkinter import *
2 import numpy as np
3 import Pmw
4 import csv
```



Status Board 3 – Core Layout

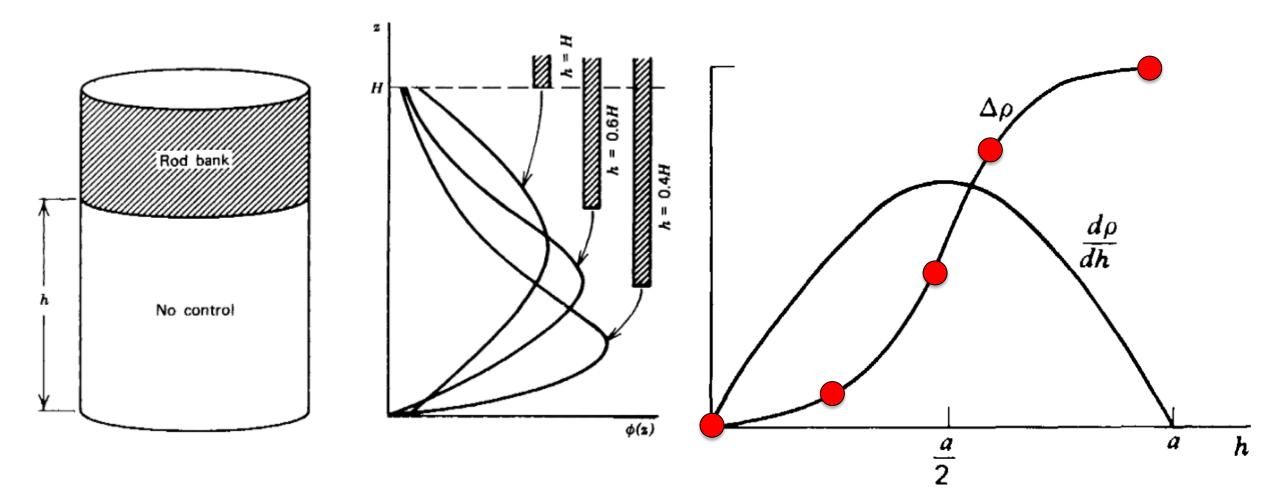
o × 76 Oregon State TRIGA Reactor Status Board Irradiation T/S/A X/Y/Z Rx Top Cave Core Status SAVE Facilities Racks Racks & Storage Pts & Notes G19 RE-23 G18 RE-22 Date Item Action Am-Be 66 LEU Elements Initial Criticality of LEU Core 10/7/2008 G22 RE-36 G16 RE-38 Source 90 LEU Elements LEU Core #1 10/14/2008 RE-33 G15 11626 3/25/2010 Safe Channel Chamber Replaced CIC with UIC 11/15/2011 Fission Chamber Replaced FC Replaced Al terminus w/ Ti/SS 4/1/2013 Rabbit Terminus Reflector Outage 11/1/2013 New Reflector Installed 17-120 G25 11607 D10 11634 D9 11559 D11 11558 Safe Channel Chamber Replaced UIC 11/10/2015 12/16/2016 Safe Channel Chamber Replaced UIC Status Board 10/21/2017 Finally got it to work F22 11565 10/28/2018 TRTR Presented on Status Board E8 11548 C10 11632 E19 11582 RE-09 Al Plug RE-03 C3 11616 RE-13 RE-32 RE-12 E4 11603 RE-18 RE-05 G6 RE-28 RE-16 G5 RE-40 G4 RE-04 **Empty Empty** RE-35 Rabbit

 \times ₽ 76 Oregon State TRIGA Reactor Status Board Irradiation T / S / A | X / Y / Z | Rx Top Cave | Core Status SAVE Racks & Storage Pits & Note Core Map Racks Facilities D14 Fuel — ID: 11612 A1 AI ☐ ID: Al Plug F4 Fuel → ID: 11591 G6 Ref - ID: RE-28 RE-23 B1 CLICIT -ID: 17-789 2 D15 Fuel ID: 11606 F5 Fuel □ ID: 11590 G7 Ref — ID: RE-18 Am-Be Source B2 Fuel ID: 11600 D16 Fuel ID: 11608 F6 Fuel → ID: 11587 Ref ID: RE-14 RE-38 RE-36 RE-33 B3 Fuel D: 11573 D17 Fuel □ ID: 11610 □ ID: 11592 Ref — ID: RE-13 F7 Fuel G10 Ref - ID: RE-09 **B4** D: 11630 | IFE D18 Fuel □ ID: 11604 Fuel ☐ ID: 11593 CR CLICIT E13 11547 B5 D: 11617 → ID: 11609 □ ID: 11602 G11 Fuel - ID: 11586 Fuel E1 Fuel ICIT B6 Rabbit D: 11574 → ID: 11555 F10 Fuel □ ID: 11614 G12 Fuel - ID: 11578 E2 Fuel Empty 17-120 C1 D: 11619 E3 Fuel ID: 11605 F11 Fuel □ ID: 11556 G13 Fuel - ID: 11624 ΑI C2 D: 11618 F12 | ICIT | ID: 17-120 2 G14 Fuel - ID: 11564 E4 Fuel ─ ID: 11603 C3 Fuel → ID: 11616 E5 Fuel → ID: 11550 F13 Fuel □ ID: 11563 G15 Fuel - ID: 11626 CR ID: Trans E6 Fuel □ ID: 11551 F14 Fuel □ ID: 11584 G16 Ref - ID: RE-38 G17 Source ID: Am-Be Source C5 Fuel → ID: 11615 E7 Fuel ─ ID: 11549 F15 Fuel → ID: 11585 ─ ID: 11562 ID: 11548 ☐ ID: RE-33 G18 Ref - ID: RE-22 C6 Fuel E8 Fuel F16 Ref C7 Fuel - ID: 11561 G19 Ref - ID: RE-23 ID: 11541 ☐ ID: RE-27 E9 Fuel F17 Ref C8 Fuel - ID: 11560 ☐ ID: 11543 □ ID: 11568 G20 Ref - ID: RE-11 E10 Fuel F18 Fuel RE-09 Al Plug RE-03 C9 Fuel - ID: 11572 E11 Fuel ID: 11545 F19 Fuel ☐ ID: 11569 G21 Ref - ID: RE-21 Reg C10 CR - ID: 11632 Reg E12 Fuel □ ID: 11576 F20 CLICIT - ID: 17-980 3 G22 Ref - ID: RE-36 C11 Fuel - ID: 11570 E13 Fuel - ID: 11547 F21 Fuel - ID: 11552 G23 Fuel - ID: 11553 RE-13 RE-32 C12 Fuel - ID: 11599 ☐ ID: 11583 □ ID: 11565 G24 Fuel - ID: 11601 E14 Fuel F22 Fuel G25 Fuel - ID: 11607 D1 CR - ID: 11633 Safe E15 Fuel □ ID: 11546 F23 Fuel □ ID: 11567 RE-12 D2 Fuel - ID: 11596 E16 Fuel - ID: 11581 F24 Fuel - ID: 11554 G26 Fuel - ID: 11566 D3 Fuel - ID: 11571 □ ID: 11579 → ID: 11623 G27 Fuel - ID: 11588 E17 Fuel F25 Fuel RE-18 RE-05 G28 Ref - ID: RE-03 D4 Fuel □ ID: 11595 E18 Fuel □ ID: 11544 F26 Fuel □ ID: 11621 Safe → ID: 11597 → ID: 11582 → ID: 11622 G29 Ref - ID: RE-32 • D5 Fuel E19 Fuel F27 Fuel G6 RE-28 RE-16 D6 Fuel → ID: 11598 E20 Fuel ☐ ID: 11542 F28 Fuel → ID: 11620 G30 Ref - ID: RE-12 D7 Fuel ID: 11594 E21 Fuel ID: 11577 F29 Fuel □ ID: 11625 G31 Ref - ID: RE-05 G5 RE-40 → ID: 11557 F30 Fuel - ID: 11627 G32 Ref - ID: RE-16 D8 Fuel E22 Fuel → ID: 11580 G4 RE-04 □ ID: 11559 ☐ ID: 11575 G33 Ref - ID: RE-31 Empty D9 Fuel E23 Fuel G1 Empty - ID: Empty **Empty** G3 D10 CR - ID: 11634 Shim E24 Fuel ID: 11540 G2 Rabbit - ID: G34 Ref - ID: RE-20 Rabbit G2 G1 **Empty** RE-35 G35 Ref - ID: RE-17 D11 Fuel ─ ID: 11558 F1 Empty ID: G3 Empty — ID: Empty Rabbit **Empty** G36 Ref - ID: RE-35 □ ID: 11613 F2 Empty - ID: D12 Fuel Ref — ID: RE-04 D13 Fuel - ID: 11611 F3 Fuel - ID: 11589 G5 Ref - ID: RE-40

Status Board File Details

- Framework in .py file
- Data saved in .csv file
- Runs on Python 2.7
- 560 lines of code (old status board was 10,000+ lines in separate files)

	Α	В	С	D
1	A1	Al	Al Plug	
2	B1	CLICIT	17-789	2
3	B2	Fuel	11600	
4	B3	Fuel	11573	
5	B4	Fuel	11630	IFE
6	B5	Fuel	11617	
7	B6	Fuel	11574	
8	C1	Fuel	11619	
9	C2	Fuel	11618	
10	C3	Fuel	11616	
11	C4	CR		Trans
12	C5	Fuel	11615	
13	C6	Fuel	11562	
14	C7	Fuel	11561	
15	C8	Fuel	11560	
16	C9	Fuel	11572	
17	C10	CR	11632	Reg
18	C11	Fuel	11570	
19	C12	Fuel	11599	
20	D1	CR	11633	Safe


Page 10 OSTR_Status_Board	11/27/2017 4:49 PM	Python File	22 KB
Status_Board_Data	10/28/2018 1:41 PM	Microsoft Excel C	6 KB

Part II: Control Rod Calibration Program

Pertubation Theory

Control Rod Calibration Procedure

- Four B₄C control rods calibrated annually
- "Rod Pull" Method:
 - Achieve criticality at 15W with 3 control rods, range up to 1kW
 - Withdraw rod being calibrated, establish positive period
 - Linear channel timer measures time (ms) to go from 200W-800W
 - Repeat until rod fully withdrawn (then repeat for other rods)
 - Spline interpolation of data points

$$P = P_0 e^{t/T} - T = t/\ln(P/P_0)$$

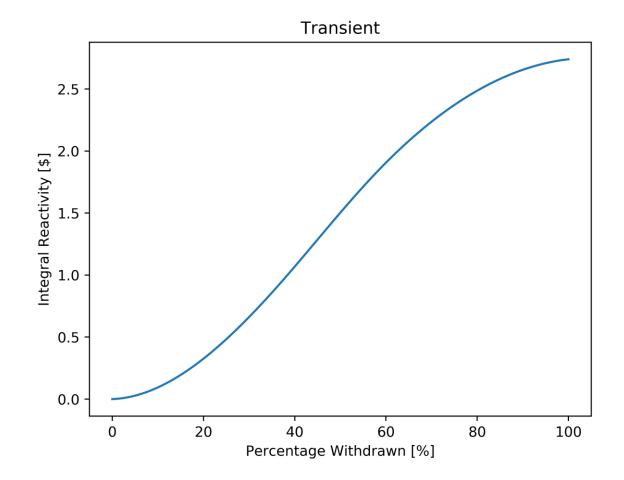
$$\$ = \frac{l^*}{\beta_{ef}T} + \sum_{i=1}^{6} \frac{\beta_i}{1 + \lambda_i T}$$

Control Rod Calibration Program

 Python 2.7 with TkInter module (Same as Status Board)

7 ∕ OSTR Contr	ol Rod Calibratio	n				_	_ ×
Select Control Rod: Pull Starting Ending Rise Reactor Period [1/s] Reactivity [\$] Integral Reactivity [\$] 1 0.0 0.0					Plot Results		
Pull Number [#]	Starting Position [%]	Ending Position [%]	Rise Time [ms]	Reactor Period [1/s]	Reactivity [\$]	Integral Reactivity [\$]	
1	0.0					0.0	Next

Control Rod Calibration Program



Program Output

- Integral rod worth plot
- .csv file with %/Δρ data

	Α	В	
502	50.1	\$	1.51
503	50.2	\$	1.51
504	50.3	\$	1.52
505	50.4	\$	1.52
506	50.5	\$	1.52
507	50.6	\$	1.53
508	50.7	\$	1.53
509	50.8	\$	1.54
510	50.9	\$	1.54
511	51.0	\$	1.55
512	51.1	\$	1.55

Program Output

Name of control rod / date performed

			-
Page OSTR_Rod_Cal	7/31/2018 7:57 PM	Python File	8 KB
OSTR_Rod_Cal.spec	7/24/2017 11:37 A	SPEC File	1 KB
Regulating Integral Rod Worth Curve	7/25/2017 2:50 PM	PNG File	169 KB
Regulating Rod Calibration 7 25 2017	7/25/2017 2:51 PM	Microsoft Excel Co	36 KB
Safety Integral Rod Worth Curve	7/25/2017 2:45 PM	PNG File	181 KB
Safety Rod Calibration 7 25 2017	7/25/2017 2:45 PM	Microsoft Excel Co	36 KB
setup	7/24/2017 11:28 A	Python File	1 KB
Shim Integral Rod Worth Curve	7/25/2017 2:48 PM	PNG File	158 KB
Shim Rod Calibration 7 25 2017	7/25/2017 2:48 PM	Microsoft Excel Co	36 KB
Transient Integral Rod Worth Curve	7/25/2017 2:28 PM	PNG File	161 KB
Transient Rod Calibration 7 25 2017	7/25/2017 2:28 PM	Microsoft Excel Co	36 KB

Questions? Thank you!