The University of Missouri Research Reactor HEU to LEU Fuel Conversion Project Status

Leslie P. Foyto¹, Kiratadas Kutikkad¹, J. Charles McKibben¹ and Nickie Peters¹

Earl Feldman², John Stillman² and John Stevens²

- 1. University of Missouri-Columbia Research Reactor
- 2. Argonne National Laboratory

Presentation Overview

General Description of the Reactor and Fuel

- LEU Contingency Core Design "CD35"
- LEU Core CD35 Steady-State Safety Basis
- Peak Fuel Temperatures during a LOF and LOC Accident using RELAP - CD35 Core
- Fuel Conversion Affects on Beryllium Lifetime
- Transition Fuel Cycle CD35 Core
- Summary of Recent Accomplishments

Reactor Core Assembly 3D View

Reactor Core Assembly 2D View

University of Missouri (MURR); St Louis, MO

Cross Section View of Core (MCNP Model)

Development of LEU Core CD35 Design

- Feasibility Study Design (FSD): 24 variable
 thickness U-10Mo foils
 with minimum 10 mil clad
 (Al + Zr interlayer)
- Element redesigned with nominal clad thickness
 ≥ 12 mil
- Fuel design optimized for lifetime and power peaking
- "CD35" has 23 plates; thicker minimum plate thickness than FSD; same lifetime as HEU

Note: Plate 1 is the innermost plate, Plate 23 or 24 is the outermost plate.

Elem10			
ent D	Design	FSD	CD35
	Plate 1	9	9
Eucl Ecil	Plate 2	12	12
	Plate 3	18	16
	Plates 4-22	18	20
(mii)	Plate 23	18	17
	Plate 24	17	N/A
	Plate 1	20	17.5
Clad	Plate 2	13	16
Thickness	Plate 3	10	14
	Plates 4-22	10	12
(mii)	Plate 23	10	16
	Plate 24	16	N/A
Diato	Plate 1	49	44
Thickness	Plates 2-22	38	44
	Plate 23	38	49
(mii)	Plate 24	49	N/A
	Channel 1	95	95.5
Coolant	Channels 2-5	92	93
Channel	Channels 6-19	92	92
Thickness	Channels 20-23	92	93
(mil)	Channel 24	92	95.5
	Channel 25	95 eeting – Septem	N/A ber 23-26, 2013

University of Missouri (MURR); St Louis, MO

Current HEU and Proposed LEU Core CD35 Fuel Cycles

Parameter	Current HEU Fuel	Proposed LEU Fuel - CD35	
Refueling:	Weekly – replace all 8 fuel elements; fuel elements are used in 18-20 core loadings	Weekly – replace all 8 fuel elements; fuel elements are used in 18-20 core loadings	
EOC Core MWd (control blades full out):	~640 MWd core with equilibrium xenon	~765 MWd core with equilibrium xenon	
Maximum	150 MWd/element < 1.6E+21 peak fissions/cc (< 43 at% peak burnup)	180 MWd/element < 3.4E+21 peak fissions/cc (< 44 at% peak burnup)	
burnup:	HEU Technical Specification limit is 2.3E+21 peak fissions/cc		
Fuel Cycle:	22 elements/year at 10 MW 32 fuel elements in active fuel cycle	22 elements/year at 12 MW 32 fuel elements in active fuel cycle	

6

Power Distributions for Steady-State FI and CHF Analyses

As elements reach end-of-life, peak heat flux becomes less
However, flow instability (FI) could occur at lower power in channel of depleted element; fuel swelling and oxide growth constricts coolant channel

Power Distributions for Steady-State FI and CHF Analyses

Greatest CD35 hot stripe heat flux in case for:

- Reference core
- Equilibrium Xe
- Samples in Flux Trap
- Control Blades A&D depleted and positioned 1 inch above Blades B&C

LEU Core CD35 Flow Instability Power at 75 psia

Bringing quality nuclear research, education and service to a global community

9

TRTR Meeting – September 23-26, 2013 University of Missouri (MURR); St Louis, MO

Bringing quality nuclear research, education and service to a global community

TRTR Meeting – September 23-26, 2013 University of Missouri (MURR); St Louis, MO

11

Bringing quality nuclear research, education and service to a global community

CD35 LOF and LOC Accidents Fuel Plate 23 Centerline Temperature

CD35 LOF and LOC Accidents **Coolant Channel 23 Flow Velocity**

University of Missouri (MURR); St Louis, MO

LOF and LOC Accidents Using RELAP Peak Fuel Temperatures

Accident	HEU Core at 10 MW ¹	LEU Core at 12 MW ²	Temperature Delta ³
LOCA – Cold Leg	342 °F	347 °F	+5 °F
LOCA – Hot Leg	254 °F	310 °F	+56 °F
LOFA	273 °F	323 °F	+50 °F

Notes:

14

- 1. Core inlet water temperature set at LSSS of 155 °F.
- 2. Core inlet water temperature set at LSSS of 145 °F.
- 3. Increase in temperatures is a result of a 20% increase in power and lower fuel plate heat conductance.

Fuel Conversion affect on Beryllium Lifetime

- Beryllium is replaced about every 8 years (~26,000 MWD) with current operating schedule (151 Hrs/wk) using HEU fuel at 10 MW
- Fuel conversion to LEU fuel at 12 MW will alter thermal heating and swelling-induced stresses
- MCNP analyses indicate an increase in the average gas concentration in the peak region from 1,530 ppm to 1,690 ppm (10.5 % greater)
- MCNP analyses indicate a decrease in the average heating rate in the peak region from 4.65 w/cm³ to 3.63 w/cm³ (24 % less)
- Based on this information, what is the overall affect?
 Will work with ATR & HFIR to better estimate it

CD35 Transition Core – Borated Side Plates

Transition LEU Core CD35 - Fuel Cycle

Weekly LEU Cores	Core Elements (Boron/Standard)	Boron Side Plate LEU Fuel Elements	Standard Side Plate LEU Fuel Elements	BOC Core MWDs		
$C1 \rightarrow C14$	6/2	12	8	0 - 435		
$C15 \rightarrow C27$	4/4	12	16	340 - 640		
$C28 \rightarrow C49$	2/6	12	22	514 - 720		
End of Transition Fuel Cycle—Normal LEU Fuel Cycle						
C50 +	0/8	0	32	632 Ave.		

- Boron side plate fuel elements contain 1300 ppm (0.13%) of B-10.
- MURR will average retiring two fuel elements at 180 MWd burnup due to reactivity limitations and adding two new elements eleven times per year.

Potential Transition Fuel Cycle Cores Compared to the Intended Routine Cycle

Bringing quality nuclear research, education and service to a global community

18

Summary of Recent Accomplishments

- Completed alternate LEU fuel element design CD35 for thicker clad and thicker plates than feasibility study design.
- Completed steady-state safety basis for CD35 LEU core at 12 MW:
 - J. Stillman, et al., "Technical Basis in Support of the Conversion of the University of Missouri Research Reactor (MURR) Core from Highly-Enriched to Low-Enriched Uranium – Core Neutron Physics," September 2012
 - E. E. Feldman, et al., "Technical Basis in Support of the Conversion of the University of Missouri Research Reactor (MURR) Core from Highly-Enriched to Low-Enriched Uranium – Steady-State Thermal-Hydraulic Analysis," January 2013
 - L. Foyto, et al., "Draft Chapter 4, Reactor Description, Safety Analysis Report, Highly-Enriched to Low-Enriched Uranium Conversions," January 2013

Summary of Recent Accomplishments

- Increasing formality of information exchange with FD Pillar:
 - J. Stillman, et al., "Conceptual Design Parameters for MURR LEU U-Mo Fuel Conversion Design Demonstration Experiment," September 2012
 - J. Stillman, et al., "Irradiation Experiment Conceptual Design Parameters for MURR LEU U-Mo Fuel Conversion," March 2013
 - Rev 1 completed (June) to describe impacts of tolerances & uncertainties
- Completing Phase 1 of Transient and Accident Analyses for LEU core CD35 as required by Chapter 13 of the LEU Conversion SAR – MCNP
- Completing Phase 1 of Ancillary Analyses
 - Effect of LEU at 12 MW on Beryllium Lifetime
 - Transition Element Design and Strategy for CD35 LEU Fuel Cycle

Thank You For You Attention, Any Questions???

E MELE HERE E

