

Introducing the University of Utah Nuclear Engineering Facilities: Operational Protocols, Training Practices, Outreach Activities and Research

Dr. Tatjana Jevremovic EnergySolutions Presidential Endowed Chair Professor in Nuclear Engineering Director, University of Utah Nuclear Engineering Program Ryan Schow*, Jessica Engler*, Greg Moffitt*, Steven Burnham Reactor Supervisors, Lab Planner & Analyst

TRTR, September 26, 2013

- A third of all workers at the 102 currently operating U.S. plants could retire in the next five years¹
- Majority of operating Nuclear Power Plants were constructed in the 1970's
- Average person earning their PhD in Nuclea Engineering wasn't alive when the last plant began construction!
- At the Universities we hardly see the training in nuclear safety in nuclear engineering labs, and at the existing research reactor facilities

OUTLINE

NRC Safety Culture Traits

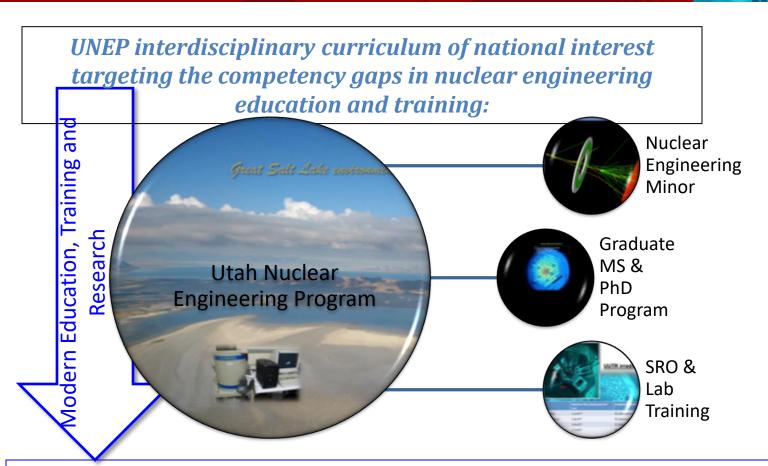
- Training
- Education
- Research
 - Outreach

With examples on:

- Lab/Reactor Daily Practices
- Knowledge Transfer (Management)
- Workforce development

UNEP Mission & Vision

http://www.nuclear.utah.edu/


- MINOR in Nuclear Engineering
- New Graduate Program
- Advantages:
 - HANDS-ON experience: facilities
 - New modernized program in meeting the expectations of the 21st century nuclear industry
 - Cutting-edge research for all students

Provisioning the next generation staff

with high quality hands-on education & training for aspiring nuclear engineers, scientists and policy-makers

Nuclear Engineering THE UNIVERSITY OF UTAH

Bridging nuclear engineering and other disciplines at the U into nuclear engineering integrated studies with hands-on experiential learning

Introducing a discipline-specific training emphasizing the nuclear safety culture, human performance and knowledge management

Adjusting the Development of Nuclear Education to New Technical and Social Realities – UNEP

2009: Facility cleanup/renovation & new SRO training

2010: New education curricula & new lab protocols establishing safety culture elements/ Started the process of relicensing TRIGA

2011: Relicensed TRIGA for the next 20 years

PM Geoff Wertz

2012: Operation under DevonWay CAP system

2013: Renovation/ New staff/ "Measuring" our framework of nuclear safety improvement; innovations; training and education ; nuclear knowledge management framework; workforce development

Adjusting the Development of Nuclear Education to New Technical and Social Realities – UNEP

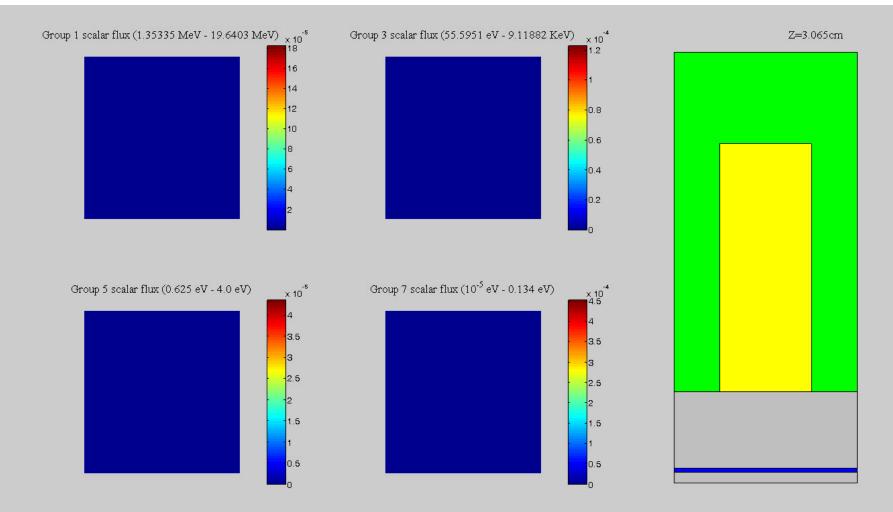
Blue Wing

White Wing

9 radiation counting stations Microscopy Lab Source room BNCT room Nuclear Forensics Lab

100 kW TRIGA & Nuclear Museum (AGN)

Adjusting the Development of Nuclear Education to New Technical and Social Realities – UNEP


Blue Wing

2011:

- Relicensed in October (simulations and modeling performed by ourselves)
- Pool grating in December

UNEP Research: REACTOR MODELING

Nuclear Engineering THE UNIVERSITY OF UTAH

AGENT Model of our TRIGA

After the NRC Safety Culture Traits

2012: Operation under DevonWay CAP system

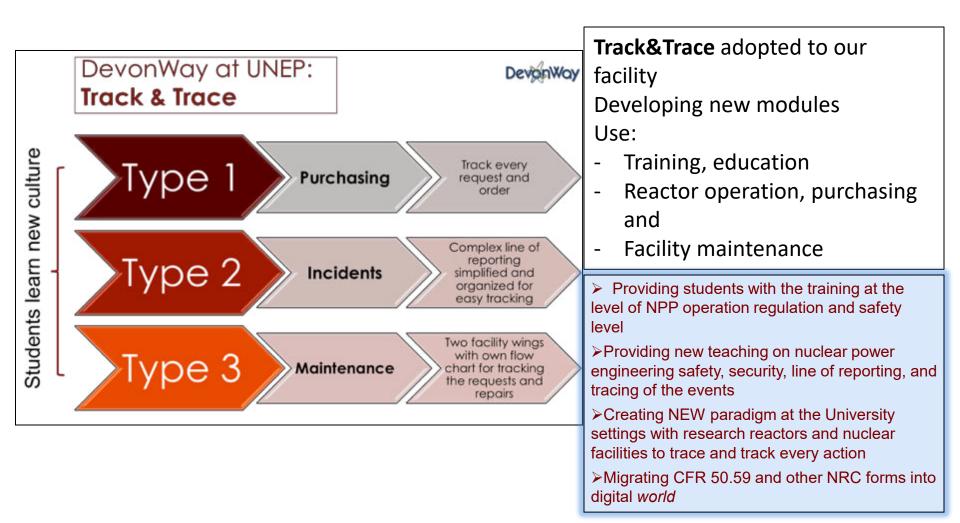
- Continuous learning and continuous improvement
- Safety thinking
- Raising concerns
- Problem identification & resolution
- Personal accountability
- Education underlying the reasons for safety culture

t

- Sample science and library
- SRO training
- NAA, BNCT,.... protocols

Measuring" our framework of <u>nuclear safety</u> <u>and continuous improvement</u>; innovations; training and education ; nuclear knowledge management framework; **Toward workforce development**

NUCLEAR SAFETY DISCIPLINE!!!!!



SHOES COVER

New realities in Scientific, Technological and Social Life of Society became reflected in the content and tools of Nuclear Education at UNEP

Nuclear Engineering THE UNIVERSITY OF UTAH

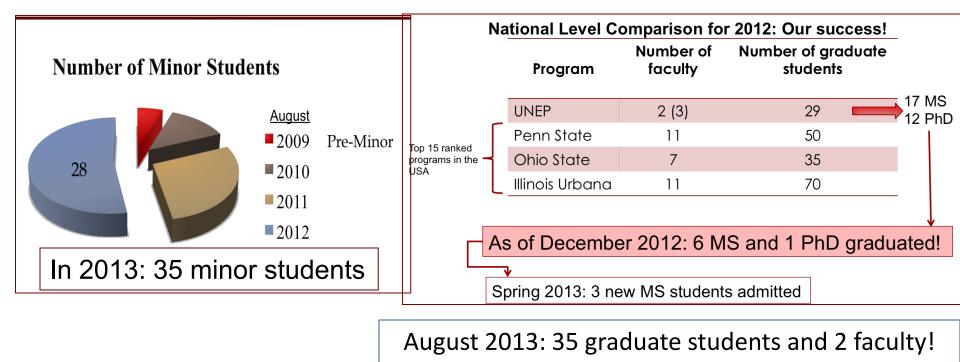
UNEP Safety Values and Actions

UNEP Training on How to Address the Problem in Labs, How to Identify and Develop a Proper Resolution

Personal Accountability

We are now teaching nuclear safety culture as a part of regular lab classes & all graduate students are required to be trained in CAP using DevonWay We train the students to identify issues impacting personal and team safety in the lab settings, with the hope to develop new set of skills – knowing how to evaluate, define, where and to whom to report and when to immediately correct

We created environment for continuous improvement and learning of new safety practices and needs as applied to UNEP We train and require that all students working in the labs at UNEP, practice the safety procedures and take personal responsibility for the overall safety


We created environment where students are couched how to raise safety concerns

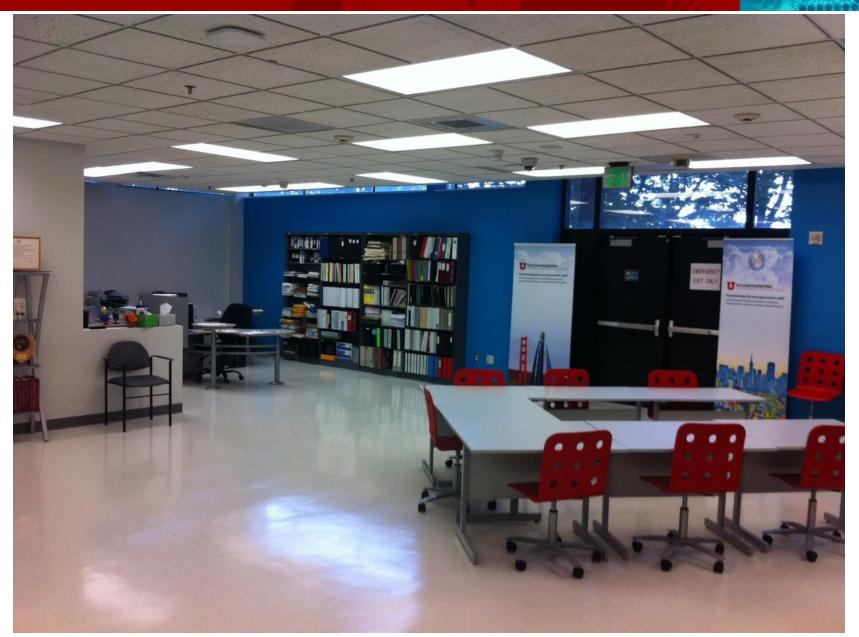
With so many tours (high-school students close to 80% of total visitors), we are developing instructional web-based (cell-phone based!) nuclear safety culture communication tools \rightarrow Facebook or similar....

Nuclear Engineering THE UNIVERSITY OF UTAH

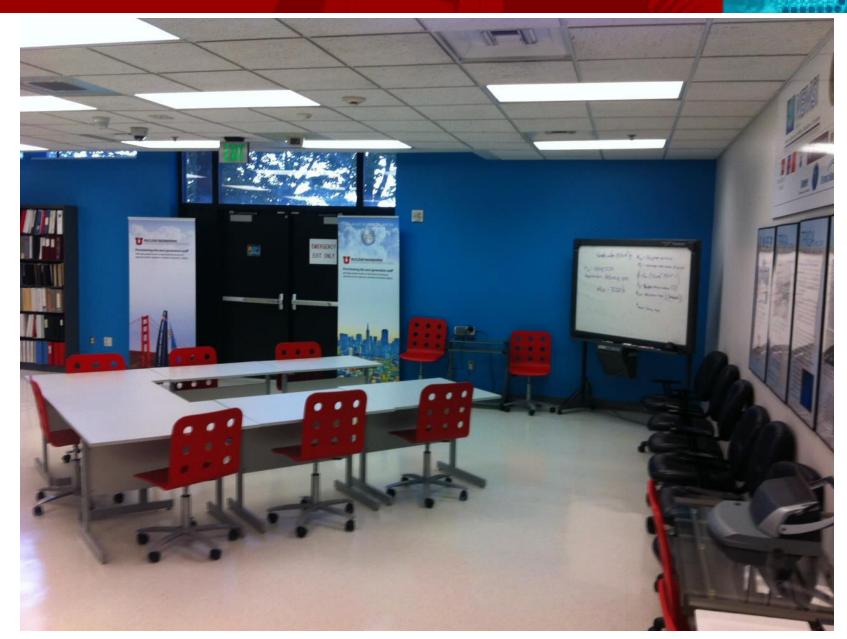
UNEP Students

Nuclear Forensics Graduate Track as of 2012!

Graduating 5 MS this fall!


UNEP Staff

Steve Burnham Lab Planner and Analyst MS student Greg Moffitt Reactor Supervisor MS student Ryan SchowJessica EnglerReactor Supervisors in trainingPhD studentMS student


Nuclear Engineering THE UNIVERSITY OF UTAH

UNEP Remodeling

Nuclear Engineering THE UNIVERSITY OF UTAH

UNEP Remodeling

- Formalized the implementation of 10 CFR 50.59
- Created a Manual and an Administrative Procedure
 - Procedure is supplemented with 3 "Job-Aids"
 - 1: Screening
 - Determine if a full evaluation is required
 - 2: Evaluations
 - If a change affects safety and Evaluation is done and goes to the Safety Committee
 - 3: Designates Those Approved by UNEP Director to Implement 10CFR50.59

Nuclear Engineering

THE UNIVERSITY OF U

EXAMPLE #1: 10CFR50.59

10 CFR 50.59 SCREENING

NOTE

This Job Aid is to be prepared and reviewed only by those individuals designated as 10 CFR 50.59 Screener/ Evaluators, by the UNEP Director, in writing, via UNEP JOB-AID 004.

AND

At least one of those individuals (preparer or reviewer) must be a licensed SRO, with an active NRC license, at the UNEP UUTR Facility

1. APPLICABILITY

The scope of this job aid applies to implementation of certain activities that affect the following:

- Permanent and temporary design changes.
- Changes to UNEP procedures that are outlined, summarized, or completely described in the UNEP Forms.
- Tests or experiments not described in the UUTR SAR Technical Specifications.
- Proposed compensatory actions to address degraded or non-conforming conditions.

2. ACTIVITY DESCRIPTION

Summary of Activity (Title):

Detailed Description of Activity (what is being changed and why):

3. SAFETY DETERMINATION

CAUTION: IF the answer to the following question is yes, THEN; Do not continue with this JOB-AID. <u>STOP</u>, identify and report the concern to the UNEP Director, <u>STOP</u>.

 Does the proposed activity have the potential to adversely affect nuclear safety or safe UUTR facility operations?

YES() NO(

Formatting Based on similar industry forms

Screening Job Aid

NOTE

This Job Aid is to be prepared and reviewed only by those individuals designated as 10 CFR 50.59 Screener/ Evaluators, by the UNEP Director, in writing, via UNEP JOB-AID 004.

AND

At least one of those individuals (preparer or reviewer) must be a licensed SRO, with an active NRC license, at the UNEP UUTR Facility

1. APPLICABILITY

The scope of this job aid applies to implementation of certain activities that affect the following:

- Permanent and temporary design changes.
- Changes to UNEP procedures that are outlined, summarized, or completely described in the UNEP Forms.
- Tests or experiments not described in the UUTR SAR Technical Specifications.
- Proposed compensatory actions to address degraded or non-conforming conditions.

2. ACTIVITY DESCRIPTION

Summary of Activity (Title):

Replacement of ultrasonic level Detector

Detailed Description of Activity (what is being changed and why):

Replacement of the Omega - 10401 - ultrasonic level detector with an Omega LUU-030

3. SAFETY DETERMINATION

CAUTION: <u>IF</u> the answer to the following question is yes, <u>THEN</u>; Do not continue with this JOB-AID. <u>STOP</u>, identify and report the concern to the UNEP Director, <u>STOP</u>.

1. Does the proposed activity have the potential to adversely affect nuclear safety or safe UUTR facility operations?

YES () NO (χ)

This year NRC inspection

- Approved the protocol

- Liked the Job Aids
- Examined all our repairs due to aging

4. SCREENING QUESTIONS

Instructions: Answer the following questions. Refer to the following documents, as necessary, for additional information/ clarification.

- 1. UNEP AP-001, "Guidelines for 10 CFR 50.59 Evaluations"
- 2. 10 CFR 50.59, "Changes, Tests and Experiments"
- NRC Regulatory Guide 1.187, "Guidance for Implementation of 10 CFR 50.59, Changes, Tests, and Experiments," October 2000
- 4. NEI 96-07, Revision 1, "Guidelines for 10 CFR 50.59 Evaluations," November 2000
- 5. UNEP Safety Analysis Report (SAR)
- 6. UNEP Technical Specifications
- 1. Does the proposed activity involve a change to an SSC that adversely affects a design function described in the UUTR SAR?

YES () NO (X)

2. Does the proposed activity involve a change to a procedure that adversely affects how UUTR SAR described SSC design functions are performed, controlled, or tested?

YES () NO (X)

3. Does the proposed activity involve revising or replacing an UUTR SAR described evaluation methodology that is used in establishing the design bases or used in the safety analyses? YES () NO (X)

4. Does the proposed activity involve a test or experiment not described in the UUTR TS, where an

6. Justification of Screening Question Responses

Instructions: Explain, in detail, why each "NO" answer was given in section 2 for questions 1-4. Site the references made to make the determination, including pages and section numbers where appropriate. It is <u>NOT</u> adequate to merely restate the question in the negative, specific explanations, with references are required. (Additional pages may be and attached added as necessary)

Question 1: Does the pr	roposed activity involve a change to an SSC that adversely affects a design		
function described in the	e UUTR SAR?		
Justification of "NO"	NO. THEY UITRASONIC LUL. DETECTOR iS ONLY MENTIONED		
response:	AS A MONITOR FOR LUL. ONLY ONE TIME, AND NO DATA OR REQUIREMENTS, OTHER THAN MONITOR ARE LISTED.		
References:	SAR 5.2 (ONLY MEATION IN SAR OF THE DETECTOR) SAR 7.1 (STATES LUL IS MONITOLES)		
	SAR 7.2.1 (MEUTIONS WATERLULALARM, BUT THIS DOESN'T CONFERM		

Question 2: Does the proposed activity involve a change to a procedure that adversely affects how UUTR SAR described SSC design functions are performed, controlled, or tested?

NO. THIS DEFECTOR FUNCTIONS WITH THE SAME OUT POT UDLTAGE. SO THE METER WILL FUNCTION THE SAME. NO RESTING OR FUNCTIONS FOR THE DETECTOR ARE IN THE SAR		

	oposed activity involve revising or replacing an UUTR SAR described that is used in establishing the design bases or used in the safety analyses?
Justification of "NO" response:	NO, THE DETECTOR PLAYS NO PART IN THE SAR ACCIDENT ANAY HSIS, ONLY THE BALL FLOAT (FEEDS THE SCRAM)
References:	SAR 13.2.3 + LOSS OF COOLANT ACCIDENT

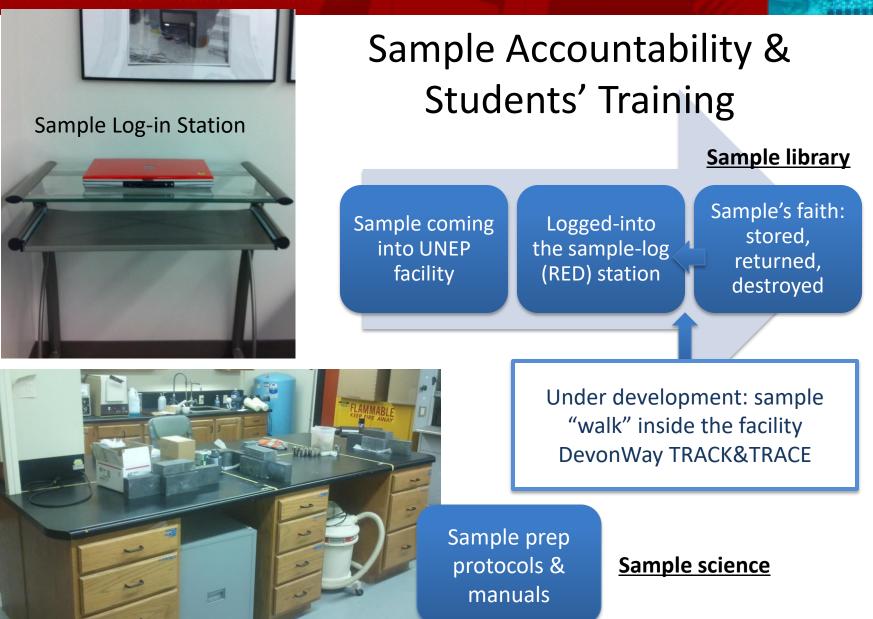
where an SSC is used or c	poosed activity involve a test or experiment not described in the UUTR TS, controlled in a manner that is outside the reference bounds of the design for nt with analyses or descriptions presented in the UUTR SAR?
Justification of "NO" response:	NO, NO TESTS OF THE ULTRA SONIC DETECTOR ARE DESCRIBED IN ANY ONE LOCATION IN THE UNEP SAR.
References:	

Number of Attached Pages: O

7. Approvals and Document Retention

NOTE

The completed document, with any additional pages, must be filed in the UNEP control room grey file cabinet.


AND

This document must be retained for the lifetime of the UUTR facility

Preparer:	Jessica Engine	Det ly.	<u>819111</u> Date
Reviewer:	Greg MFF; Ht Print Wame	Signature Muffitt	<u></u>
Approval: (UNEP Director)	Tatjang)evremovic Print Name	Signature	08/09/11 Date
Devon Way Entry:	Jessica Engler Print Name	Signature	<u>Blzslii</u> Date
Control Room File:	<u>Jessica</u> Engler Print Name	Signature	<u> </u>

NOTE: Either the preparer or the reviewer must be a licensed SRO, with an active NRC license, at the UNEP UUTR Facility

Nuclear Engineering THE UNIVERSITY OF UTAH EXAMPLE #2: Sample Science and Library

EXAMPLE #2: Sample Science and Library

Sample physical library

EXAMPLE #3: NAA

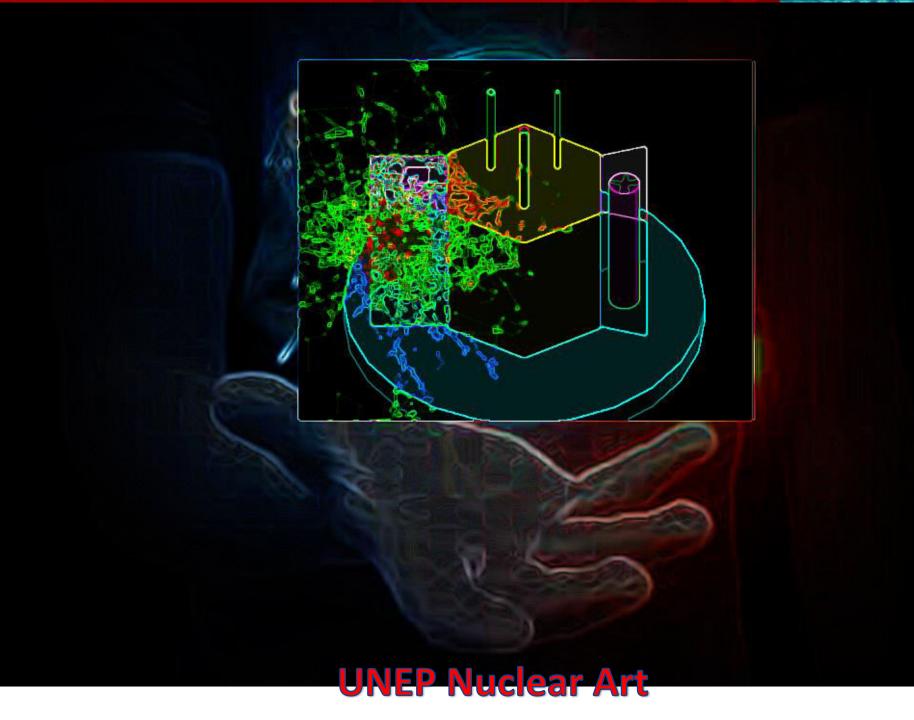
2010: NAA protocol is established, and in 2011 implemented at full scale

2011-2012: New equipment from the NEUP grant

2012-2013: Improved NAA pre-calculator

Sample arrived to facility – logged-in				
Sample-log station	Sample prep for NA	Sample prep for NAA		
	Sample science	NAA pre-calculator		
	 Bio-samples (leaves, fruits, vegetables) Rock or soil samples Liquid samples Other samples types 	 TS: experiment NAA pre-calculation of the sample activity and dose rate to a person at 1ft from the sample 		
		Based on reactor power (flux), irradiation time, port		
		DECISION based on regulation and safety practices		

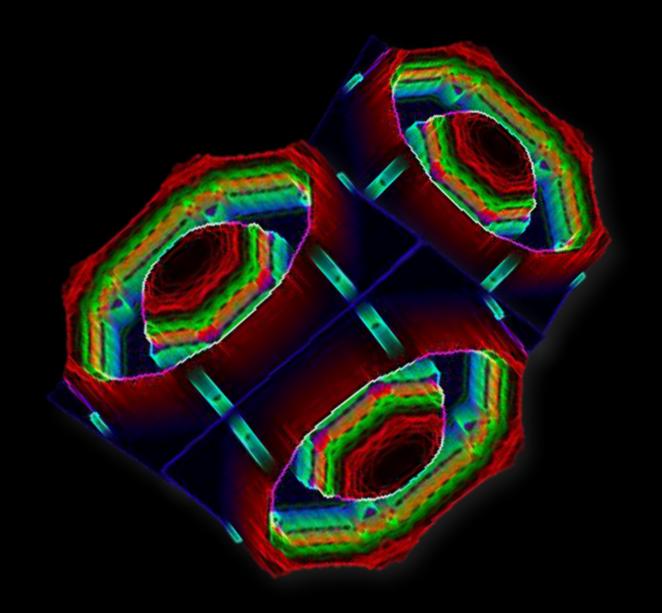
No.	oor Enginee	vin a		AMPLE #3: NAA
IAA Pre-calculator, version 1	.00			
Sample Mass:	0.5	(g)		
Irradiation time:	5	(minutes)		
Decay time in pool:	1	(minutes)		
Nuclide #1:	0-16 0-17 F-19 Na-22 <u>Na-23</u> Mg-24 Mg-25	Percent abundance in sample:	100	
	Mg-26 AI-27 Si-28 H-1 H-2			 GUI and the associated command prompt are opened simply by doubl clicking on GUI_NAA.py file
Nuclide #2:	He-3 Li-6 Li-7 Be-9 B-10	Percent abundance in sample:	0	Enter massEnter irradiation time
Nuclide #3:	B-11 C-12 H-1 H-2 He-3 Li-6 Li-7	Percent abundance in sample:	0	 Enter decay time after removal from core Select up to 5 different nuclides per calculation
	Be-9 B-10 B-11 C-12		_	 – 237 Nuclides currently built into the calculator
Nuclide #4	none H-1 H-2 He-3 Li-6	Percent abundance in complex	0	Enter percent abundance of each nuclide
Nuclide #4:	Li-7 Be-9 B-10 B-11 C-12 none H-1 H-2	Percent abundance in sample:	0	


EXAMPLE #3: NAA

C:\Python27	python.exe		10.000	-		
INEP NAA Ca	lculator Versi	on 1.00B 23-	July-2013			
	tivation Produ				===	
luclide	Activity	(mCi)	Half-life (mi	nutes)		
 la-24		 01468e-07	E38E2 A		===	
ione		NA	22025-1			
ione		NA				
ione		NA				
ione	1000000 1000 1000 1000 1000 1000 1000	NA				
otal		01468e-07				
	Iculated Dose	01-100C 01				
luclide	Dose Rat	e (mrem/hr)				
	19.90053					
ione	0.0					
ione	0.0					
ione	0.0					
ione	0.0					
otal	19.90053	74914				
100 Report	Canavata Succa	eefu]]u				

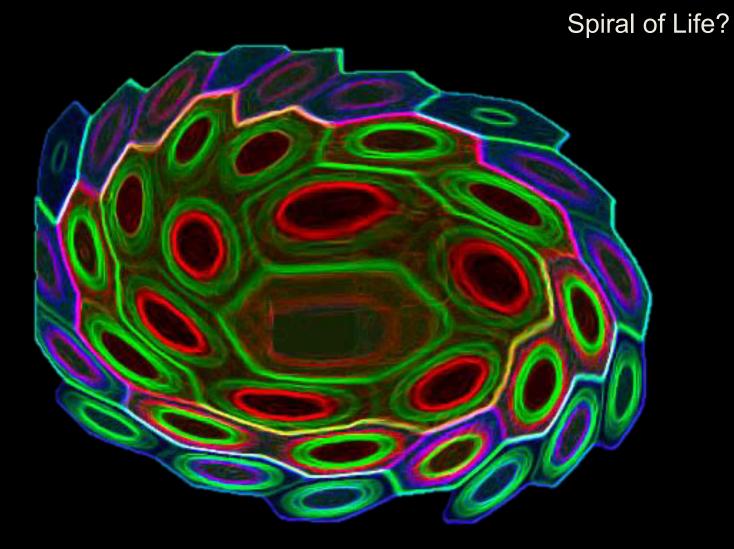
Activation products and dose rate are printed to the command prompt into a separate report that is then submitted in DevonWay under reactor run operation request

Buy our nuclear art:



The Future of Mobile Technologies in Nuclear Engineering

Varun Vijay


Hermilo Hernandez

Reactor Mirror

Samantha Winkle, Chris Adjei

The World of Nuclear Engineering

Victor Bautista

Reactor Roses

Hermilo Hernandez

Reactor Tulips

Hermilo Hernandez

Reactor Daises

Hermilo Hernandez

THANK YOU!