Analysis of Reactivity Insertion Accidents for the NIST Research Reactor Before and After Fuel Conversion

J.S. Baek, A. Cuadra, L-Y. Cheng, A.L. Hanson, N.R. Brown, and D.J. Diamond,

Nuclear Science & Technology Department Brookhaven National Laboratory

Presented at Test, Research, and Training Reactors 2013 Annual Conference September 23-26, 2013

a passion for discovery

Outlines

- Background
- NBSR
- RELAP5 Model
- Thermal-Hydraulic Analysis
- Summary and Conclusions

Background

- A plan is being developed for the conversion of the NIST (National Institute of Standards and Technology) research reactor (NBSR) from high-enriched uranium (HEU) fuel to lowenriched uranium (LEU) fuel.
 - Fuel conversion
 - HEU (93% ²³⁵U): U₃O₈ mixed with aluminum powder
 - LEU (19.75% ²³⁵U): A foil of U10Mo (uranium alloy with 10% molybdenum by weight)
- Need of safety analysis works for U.S. NRC conversion license of NBSR
- RELAP5 model has been developed to perform safety analysis for the NBSR.
 - NBSR with LEU fuel and HEU fuel

Background (cont.)

- Presenting the results of safety analysis of reactivity insertion accidents
 - Control rod withdrawal startup accident
 - Maximum reactivity insertion accident
- Post-processing of simulation results to evaluate CHFR and OFIR
 - A FORTRAN program was developed.
 - Sudo-Kaminaga correlations for CHFR
 - Saha-Zuber Criteria for OFIR

NBSR

- NBSR: National Bureau of Standard Reactor
 - NBS: Old name of NIST
 - Providing world-class capabilities in cold-neutron research
 - Materials science, chemistry, biology, neutron standards and dosimetry, nuclear physics, etc.
 - 20 MW power
 - Heavy water (D₂O) moderated and cooled
 - Inner and outer plena
 - A double plenum to provide optimized cooling to the core
 - MTR Plate-type enriched fuel elements
 - Two fuel sections with an unfueled gap in the middle to reduce the fast neutron background in the neutron beam, resulting in the thermal neutron reaching a peak in the center of the gap
 - 17 plates in each section

NBSR (cont.)

- Cut-away view of NBSR core
- Al reactor vessel (3)
- 18 cm gap (5) between upper and lower fuel sections (18)
- Semaphore-type Cd shim arms (2)
- Cold neutron source (15)

NBSR (cont.)

NBSR Fuel Elements

- Two fuel sections
- 17 fuel plates in each section
 - 0.51 mm thickness
 - 6 cm width
 - 28 cm fuel plate length
- 18 cm gap between two fuel sections

RELAP5 NBSR Model

- Detailed NBSR vessel and core
- Primary piping from vessel outlet to inlet
- Primary and shutdown pumps
- Heat exchangers
- Rectangular heat structure to represent the NBSR fuel plates
 - 30 fuel elements
 - 6 in inner plenum
 - 24 in outer plenum
- Point kinetics with 14 precursors
 - 6 for fission product delayed neutrons
 - 8 for photoneutrons
- No reactivity feedback is assumed (conservatively).
 - Only shim arm reactivity is considered.

NATIONAL LABORATORY

Brookhaven Science Associates

Thermal-Hydraulic Analysis

Accidents

- Maximum hypothetical accident (MHA), Insertion of excessive reactivity, Loss of coolant, Loss of coolant flow, Loss of normal electrical power, etc.
- Presenting analysis results of insertion of excessive reactivity
- Control rod withdrawal startup accident
 - $5 \times 10^{-4} \Delta k/k$ (50 pcm) per second
 - Initial power: 100 W
- Maximum reactivity insertion accident
 - 0.005 $\Delta k/k$ (500 pcm) in 0.5 s
 - Initial power: 20 MW
- Two limiting points in a fuel cycle
 - Startup (SU) and End-Of-Cycle (EOC) conditions

- Control rod withdrawal startup accident
 - Power increases almost exponentially.
 - Reactor trip at 26 MW
 - Peak power
 - 40.2 MW with HEU at EOC
 - 37.6 MW with HEU at SU
 - 42.0 MW with LEU at EOC
 - 38.2 MW with LEU at SU
 - Different negative reactivity insertion rate after reactor trip

- Control rod withdrawal startup accident (cont.)
 - Peak power
 - Shim arms start dropping
 - From 23° at SU
 - From 41° (fully withdrawn) at EOC

- Control rod withdrawal startup accident (cont.)
 - Power increases more rapidly with LEU fuel
 - Smaller delayed neutron fraction and shorter neutron lifetime
 - Power increases faster at SU
 - Shorter neutron lifetime as a result of shim arm presence

- Control rod withdrawal startup accident (cont.)
 - Cladding temperature
 - PCT
 - 399 K with HEU at EOC
 - 397 K with HEU at SU
 - 402 K with LEU at EOC
 - 396 K with LEU at SU
 - Small temperature rise
 - 100 K with LEU at EOC

- Control rod withdrawal startup accident (cont.)
 - Critical Heat Flux Ratio (CHFR)
 - A post-processing
 - Minimum CHFR
 - 2.15 with HEU at EOC
 - 2.19 with HEU at SU
 - 2.04 with LEU at EOC
 - 2.21 with LEU at SU
 - Larger than 1.78 and 1.86 (probability greater than 99.9%)
 - BNL performed a statistical analysis with a large size of sampling to quantify uncertainties of key parameters of CHF.

- Control rod withdrawal startup accident (cont.)
 - Onset-of-Flow Instability Ratio (OFIR)
 - A post-processing
 - Minimum OFIR
 - 3.63 with HEU at EOC
 - 3.49 with HEU at SU
 - 3.54 with LEU at EOC
 - 3.50 with LEU at SU
 - Much larger than 1.58 and 1.73 (probability greater than 99.9%)
 - BNL performed a statistical analysis with a large size of sampling to quantify uncertainties of key parameters of OFI.

- Maximum reactivity insertion accident
 - Reactor trip at 26 MW
 - Peak Power
 - Highest peak power of 34 MW with LEU at EOC
 - Cladding Temperature
 - Highest PCT of 397 K (Δ T = 27 K) with LEU at EOC

- Maximum reactivity insertion accident (cont.)
 - Minimum CHFR
 - Smallest minimum CHFR of 2.25 with LEU at EOC
 - Minimum OFIR
 - Smallest minimum OFIR of 3.25 with HEU at SU

Summary and Conclusions

- A detailed RELAP5 model has been developed to analyze the NIST research reactor (NBSR) with fuel conversion from HEU to LEU.
- Insertion of excessive reactivity accidents have been analyzed.
 - Control rod withdrawal startup and maximum reactivity insertion accidents.
- Two limiting points (SU and EOC) in a fuel cycle have been considered.
- A post-processing has been performed to evaluate CHFR and OFIR.
- Reactor power, peak cladding temperature, minimum CHFR, and minimum OFIR have been investigated.
 - All PCTs are lower than blister temperature.
 - All minimum CHFRs and OFIRs are very high.

Summary and Conclusions (cont.)

Conclusions

- The integrity of the NBSR fuel elements is preserved in all cases with both LEU and HEU fuels.
- NBSR still has a large safety margin with LEU core.

