

OSU Radiation Center

Brother, Can You Spare a Dime? (and by "Dime" I mean "IFE")

Robert Schickler and Dr. Steven Reese

Reactor Administrator and Director Oregon State University Radiation Center

> 2018 TRTR Conference Newport, RI October 30th, 2018

Background

The Oregon State TRIGA[®] Reactor (OSTR) is a 1 MW_{th} research reactor that provides irradiation services for researchers throughout the world.

OSU Radiation Center

The OSTR converted to 30/20 LEU fuel in Fall 2008.

The OSTR received 2 instrumented fuel elements (IFEs) and installed one in B4 and kept the spare in dry storage.

Current Core Configuration (as of July 2017)

"The Pulse"

- We are administratively limited to a max pulse of \$2.25
- We perform pulses for the spring Nuclear Engineering Reactor Lab course (NSE 457/557)
- We usually perform a series of different valued pulses to test the Fuchs/Nordheim model
- We performed a \$2.20 pulse on the afternoon of 5/21/18
- The next day, upon reaching full power, the operator discovered the IFE readings had increased by approximately 45C
- The temperature has been increasing ever since.
- We have a limiting safety system setting (LSSS) that causes a fuel temperature scram at 510C.

IFE Temperature History

• This is the IFE temperature history before "the pulse"

IFE Bottom and Middle Temperature (C) vs. MW-hr

IFE Temperature History

• This is the IFE temperature history up to 10/22/18

IFE Bottom and Middle Temperature (C) vs. MW-hr

Increasing IFE Temperatures

- We started digitally logging our IFE temps after the pulse and discovered divergence between bottom and middle
- Top TC has been unreliable since day 1

Increasing IFE Temperatures

- The bottom TC is the hottest channel. It jumped from ~340 to ~385 and was reading over 470 on 10/22/18
- The trendline shows the IFE exceeding LSSS on day 88

Increasing IFE Temperature

- The middle TC is cooler than the bottom TC. It jumped from ~330 to ~365 and was reading over 410 on 10/22/18
- The trendline shows the IFE exceeding LSSS on day 162

Initial "Seasoning" of Fuel

First 18 Hours of Operation in Normal LEU Core (10/21/08)

OSU

Operation After Seasoning and Pulsing

- Bottom jumped 30 degrees and rose
- Middle jumped 15 degrees and rose

Seasoning Then 10 Hours After \$2.25 Pulsing on 10/24/08

Operation After Seasoning and Pulsing

• The temperature eventually stabilized and began to decrease after about one month

Temperature (C) Bottom Middle Hours

OSU Radiation Center

From Beginning of Life Until 11/17/08 (ICIT Config)

IFE Temperature History

IFE Bottom and Middle Temperature (C) vs. MW-hr

Differences in Hourly Logs

Differences in Hourly Logs

All Pulses Greater Than \$2.00

- The OSTR has been pulsed 325 times for a total of \$562.28 of reactivity (average pulse of \$1.73)
- Only 19 pulses have exceeded \$2.00

OSU Radiation Center

Temperature Increases After > \$2.00 Pulses

 This table shows the increases seen in the bottom TC at 1 MW the day before and after a +\$2.00 pulse

Date	Maximum Reactivity	Temp Before Pulse	Temp After Pulse	ΔΤ
10/24/08	\$2.25	364	390	26
3/3/10	\$2.16	343	361	18
2/28/12	\$2.16	333	351	18
5/30/12	\$2.25	351	364	13
11/21/12*	\$2.01	363	361	-2
5/28/14	\$2.20	360	377	17
5/22/17	\$2.08	346	358	12
5/21/18	\$2.20	339	385	46

*performed on 11/21, next day of 1 MW ops on 11/27

Differences in Hourly Logs

OSU Radiation Center

1)

2)

3)

4)

- 5) Full rotating rack caused high reading
- 6) \$2.25 pulse (5/31/12)

\$2.16 pulse (3/8/10)

- \$2.20 pulse (6/10/14) 7)
- 8) Cold water caused high reading
- 9) Full rotating rack caused high reading
- 10) \$2.00 pulse (12/13/16)
- 11) \$2.08 pulse (5/23/17)
- 12) Cold water caused high reading

A Closer Look at IFE Temperature History

IFE Bottom Temperature (C) vs. MW-hr

IFE Bottom Temperature (C) vs. MW-hr

No Apparent Outliers in Pulse History

No Apparent Outliers in Pulse History

• Red = "the pulse", Blue = \$2.10 pulse done next day

Test Pulses

- Every 6 months we perform a \$1.75 "test pulse" to determine how consistent pulses are (< 20% change)
- Blue signifies 2 test pulses performed after "the pulse"

Path Forward

- Why not put in the spare IFE?
 - Two of three thermocouples were discovered to be failed open
 - We hope to have the spare IFE repaired when the CERCA fuel line is restarted
- Working with NRC to amend license to
 - 1) Operate without IFE (pulsing prohibited)
 - 2) Receive fresh IFE from UC Davis (thanks Dr. Frey)

- This will require an amendment because it is 20/20 fuel, so will require some analysis

OSU Radiation Center

(Happy Halloween)

VALIDATION OF STEADY STATE MODEL

Varying fuel-to-clad gap and identifying resulting change in temperature (note: a human hair is about 1 mil thick)

OSU

VALIDATION OF STEADY STATE MODEL

Through comparison with IFE instruments we find that 0.10 0 mils is very good and *conservative*

Difference Between Bottom and Middle TCs

Difference Between Bottom and Middle TCs

