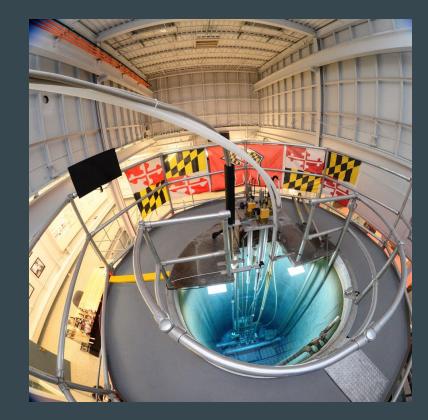
Control Rod Worth Measurements at the Maryland University Training Reactor

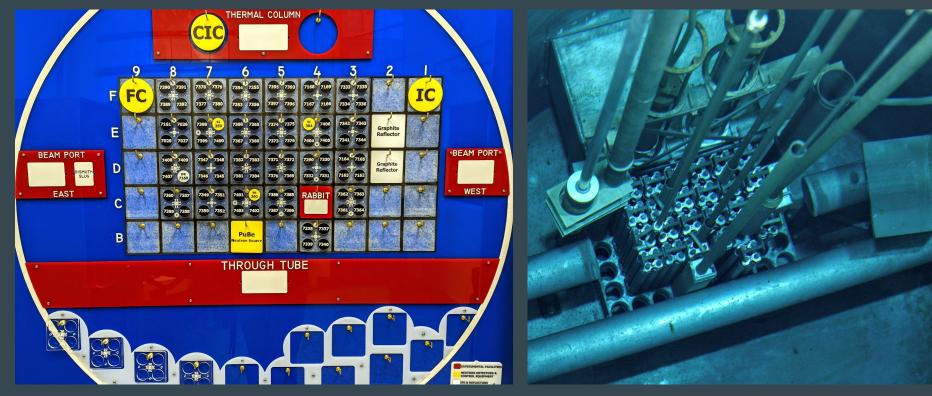

Luke Gilde, Charlie Barker, Abby Kittel, Mike Hottinger, Amber Johnson

University of Maryland Radiation Facilities

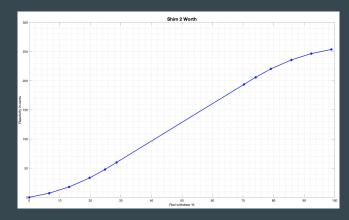
Maryland University Training Reactor

- 250 kW TRIGA Conversion Reactor
 - Built in 1960, converted to TRIGA in 1974
- Activities Include:
 - Student Reactor Operator Training
 - University Lab Classes
 - Outreach Activities
 - Neutron Activation Analysis
 - Neutron Detector Testing
 - Neutron Imaging
 - Isotope Production

Current Situation

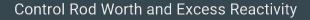

- 93 element core in nearly the same configuration as was installed in 1974
- Limited to about 100 kW
 - Due to burnup and Sm-149 buildup
- \$0.60 excess reactivity
 - Initial excess reactivity was \$2.42
- 3 control rods of approximately equal worth
 - 1 with automatic control

MUTR Core



Control Rod Worth Measurement

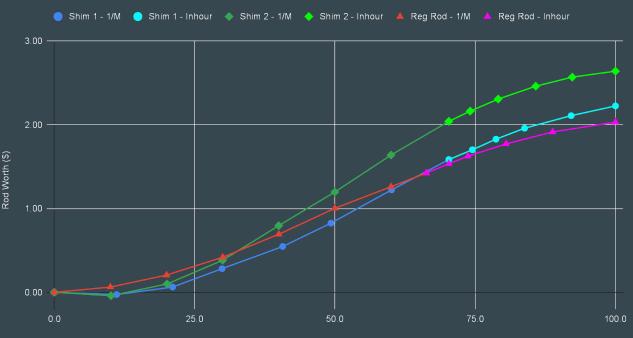
- MUTR control rod worths have historically been measured with the positive period method
 - Hand timed periods
- Due to lack of excess reactivity, MUTR can only go critical with 2 rods fully withdrawn, and final rod 2/3rds withdrawn
 - Only the worth of the final 1/3rd of each rod can be measured
- The majority of the worth curves are based on extrapolation
 - Procedures call for linearly extending the curve to 50%, then reflecting it about that axis


Step i	Approx Position	Actual Position	Period 20% to 54%	Period 31% to 81.5%	Period 31% to 81.5%	Average Period	p(¢)	$\sum_{n=1}^{l} \rho_n(\phi)$	Actual Position	$\sum_{i=1}^{rod}$
0		687					0	0	100%	6
1	73	70.5	175.2	1765	176:1	175.9	6.08	6.08	91.7	
2	7S	74,4	77.0	79.6	78.6	78.4	11.62	17.70	41.4	6.0
3	80	79.7	55.7	57,0	S7.Z	56.6	14,70	32,40		32
4	86	85,9	619	62,3	63.6	62.6	13.69	46.09	-71,1	91
5	93	91,5	951	99,3	98.5	97,6	9.92	56.01	59,7	56
6	(00)	100.0	97.4	96,6	98.9	97,6	9,92	65.93	56.7	65
7			,	,	100.1	1110	1112	62.75	24.1	65
8										
9										
10										
11										
12										



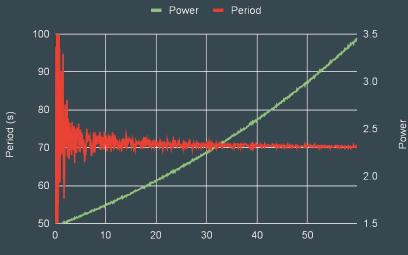
Control Rod Worth Variation

- Control Rods showed very significant variations in worth from year to year
- Excess Reactivity measurements were fairly consistent
 - Directly measured
- Issue likely due to rod position measurement errors rather than real changes
 - Extreme extrapolation exacerbates the problem
- Desirable to have a more consistent measurement method



Measurement of Full Rod Worth Curves

- In order to measure the full worth of the MUTR control rods
 1/M measurements were combined with positive period measurements
- Rod worths were also measured by the rod drop method


MUTR Rod Worth Cuves

Percent Withdrawn

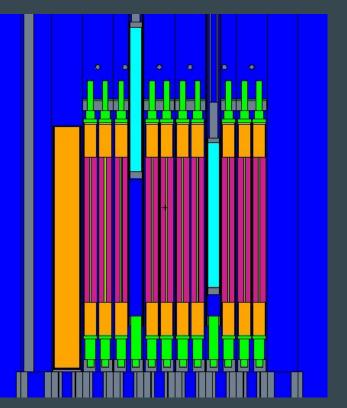
Reactivity Worth Measurement Methods

- Positive Period (Inhour) Method
 - Good accuracy: ±\$0.02 for excess reactivity
 - Minimal issues with rod / detector positioning
 - Requires the reactor to be critical for the measurements
- Rod Drop Method
 - Full rod worths, but not curve shape
 - Measurements are quick to make
 - Requires reactor to be critical
 - Sensitive to detector / rod positions
 - Some subjectivity in measurements
- 1/M Method
 - Takes a long time
 - Sensitive to detector / rod positions

Time (s)

Shim 1 - Pull 1 - 2022

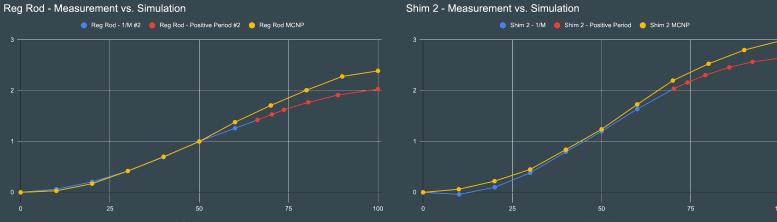
Rod Worth Measurement Results


- Measured rod worths agree reasonably well between methods
 - All methods agree on relative worths of all 3 rods

Rod	1/M + Inhour	Rod Drop + Inhour	Rod Drop	Inhour + Extrapolation	MCNP
Shim 1	\$2.22 <u>+</u> 0.08	\$2.35±0.09	\$2.45±0.01	\$2.30±0.14	\$2.52±0.40
Shim 2	\$2.64 <u>+</u> 0.09	\$2.82 <u>+</u> 0.06	\$3.04±0.02	\$2.54±0.15	\$2.83±0.40
Reg Rod	\$2.03 <u>+</u> 0.08	\$2.04 <u>+</u> 0.05	\$2.06±0.03	\$2.10±0.13	\$2.34 <u>+</u> 0.40

MCNP Modeling

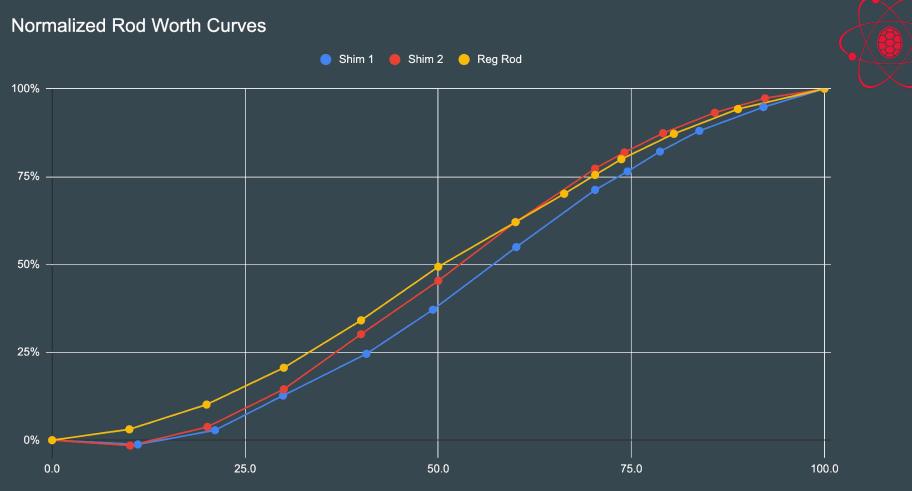
- Control rod worth curves were simulated using the MCNP model of the MUTR
- Rods were moved in alternating steps to simulate the actual movements of rods in the reactor
- Simulations showed many of the same features as the full measured curves



MCNP Modeling

• MCNP appears to overstate the worth of the upper portion of the rods

Shim 1 - Measurement vs. Simulation

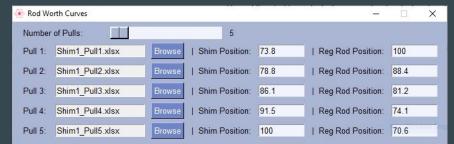

Rod Position

Rod Position

Unexpected Results

- Evidence from 1/M Rod worth measurements suggest Shim 1 and Shim 2 insert negative reactivity as they begin to be withdrawn from the core
 - MCNP Model of Shim 1 also shows this behavior
- Shim 1 and 2 Worth Curves are not symmetrical about 50% withdrawn
 - Grid plate void
 - ○ Molybdenum Disk
 - TRIGA Conversion process left experimental facilities and reflectors not vertically centered around the core
 - Results skewed by measurement techniques

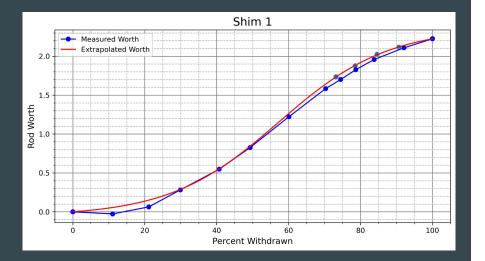
Rod Position

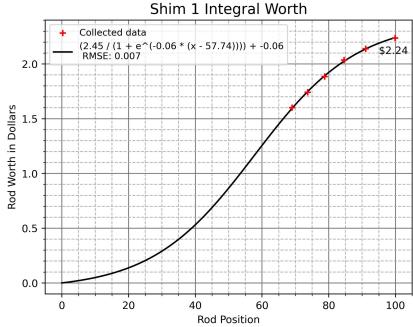

New Technique for Rod Worth Measurement

- Used full measured and simulated to determine the best fitting function for rod worth curves
 - Logistic equation in the form: $rac{L}{1+e^{-k(x-x_0)}}+b$ SciPy Least squares fitting Ο
 - 0
 - Fits through (0,0), inhour data from top 30% of curve, and total worth via rod drop
- Accurate fitting from the upper third of the control rod also requires the total rod lacksquareworth
 - Adding a rod drop measurement from the minimum critical position to determine the Ο worth of the lower 2/3rds of the control rod
- Developed a Python GUI to take rod worth data and return rod worth curves lacksquare
 - Takes points of upper worth curve, and worth of lower portion of rod Ο
 - Returns rod worth curve, total rod with and RSME for points on upper worth curve Ο

Rod Worth GUI

- Python was used to generate a GUI to process control rod worth measurement data and generate rod worth curves
 - Automatically determines worth from Positive Period power traces
 - Manually input Rod Drop worth
- Fits data points and generates the worth curve

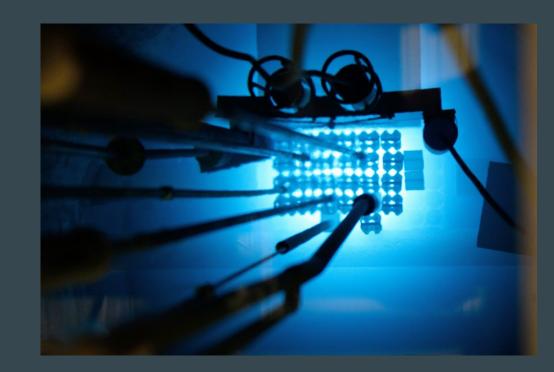



Initial shim position:	69.1	Final reg rod position:	66.3			
Shim drop position:	69.1	Reg rod drop position:	66.3			
Shim drop worth:	X.XX	Reg rod drop worth:	X.XX			
xScale correction:	13	Shim name:	Shim 1			
Data output folder:	C:/Users/Igildeadmin/Desktop/2022 Rod Worths					
Data output format:	Excel (.xlsx) C Comma separated ((.csv) C HTML (.html)			
Generate Curves						

Example Rod Worth Curves

Future Work

- Fine measurements of lower portions of control rods
- Development of automated method for calculating Rod Drop worths
- Add additional fuel to increase excess reactivity



Questions?

- Thanks to:
 - Andy Smolinski
 - Robert Shickler

