

CARMEN measuring device for the Jules Horowitz reactor Status of development

<u>M. ANTONY</u>, P. GUIMBAL, D. FOURMENTEL, P. LENOIR, L. VIGNERON, L. BESSE, S. BREAUD, R. PALHIER

CEA, DES, DIMP, DCET, Cadarache F-13108 Saint-Paul-Lez-Durance, France

muriel.antony@cea.fr

Contents

1. Jules Horowitz Reactor (JHR)

2. CARMEN objectives

3. CARMEN design

- 3.1 Global design
- 3.2 Measuring cell
- 3.3 Vertical displacement system
- 3.4 Head of the device and connector box

4. Conclusion

1. Jules Horowitz Reactor (JHR)

- MTR currently under construction at the CEA-Cadarache center (FRANCE)
- Main objectives
 - R&D to support the nuclear Industry (material and fuel behavior under irradiation)
 - Radioisotope production

⇒ see Gilles BIGNAN's presentation

2. CARMEN objectives

Multi-detector measuring device able to acquire data on neutron and photon fluxes and nuclear heating deposits with a positioning accuracy of less than 1 mm
Improve the overall knowledge of the reactor for better modeling
Improve the knowledge of experimental conditions for better quality results
Validate the performance during the reactor start-up tests

2. CARMEN objectives

Different experimental locations to be characterized

- In core:
 - 10 experimental locations
 - high fast flux: up to 6.10¹⁴ n.cm⁻².s⁻¹ (>0.907 MeV)
 - high thermal flux: up to 5.10¹⁴ n.cm⁻².s⁻¹ (<0.625 eV)
 - high nuclear heating rate in aluminum: up to 20 W/g at 100 MWth
 - installation plane accessible through the reactor vessel head: elevation: -5694 mm
- In reflector:
 - 14 experimental locations to be characterized
 - high thermal neutron flux: up to 3.5 10¹⁴ n.cm⁻².s⁻¹ (<0.625 eV)</p>
 - installation plane accessible from the seismic support structure: elevation: -7085 mm
- CARMEN must be inserted in these main different experimental locations to carry out the expected measurements

3. CARMEN design

In-pile part of the device

- based on feedback from the CALMOS device, the first mobile calorimeter device used in OSIRIS (previous French MTR reactor)
- based on the narrowest irradiation locations, those in the core, inside a fuel element
- Lower part (\emptyset 33 mm) contains the measuring cell, the displacement area and a withdrawal area out of the neutron flux to prevent drift or decalibration of its sensors
- The middle section (\oslash 86 mm) contains the vertical displacement system
- The head of the device contains the motorization box and the connector box

4731 mm

3.1 A single design for all the experimental locations

- Objective: to have a back-up device in the event of failure
- Objective: minimize the number of CARMEN devices needed in operation
 - Design adaptation necessary to be as close as possible to the core vessel when the device is on a displacement system

⇒ The connector box has been offset from the axis of the device and the installation height of the device has been shifted axially

- Design adaptation necessary to deal with different installation plane heights in the core and in the reflector
- ⇒ Measurement cell withdrawal area depending on the location

<u>Core locations:</u> withdrawal area in the upper part Reflector locations: withdrawal area in the lower part

Difference in altimetry between the installation core plane and the

installation reflector plane: 493.5 mm

3.2 Measuring cell

Measurement accuracy of 10% at 2 σ

CARMEN will be equipped with state-of-the-art instrumentation

- A miniature ionization chamber with an external diameter of 3 mm to measure the gamma flux
- Two miniature fission chambers with an external diameter of 3 mm (U-235 and Pu-242 deposit) to measure the thermal and fast neutron flux

⇒ Used in French and international reactors for many years, does not require further development

- A recent generation differential calorimeter made of aluminum and stainless steel with an external diameter of 19 mm and an approximate height of 10 cm to measure the nuclear heating
 - ⇒ Nuclear heating range to be measured in the aluminum will be quite large
 - $_{\odot}~$ in the core from about 0.4 W/g at 2 MW power to 20 W/g at 100 MW power
 - $_{\odot}~$ In the reflector about 40 mW/g at 2 MW
 - ⇒ Development efforts focused on the calorimeter

3.2 Measuring cell

 CARMEN calorimeter: an upgrade of the one used on CALMOS (OSIRIS measurement device)

- Mock-ups made it possible to validate the different
 stages of the manufacturing protocol
- Thermal cycling tests at 350°C have validated the homogeneity of the temperature in the winding
- ⇒ The calorimeter retained its insulation and resistivity during the tests

Validation under high flux: irradiation in the
 BR2 reactor (Belgium) is being prepared
 and planned for the 2nd quarter of 2025

3.3 Vertical displacement system

 A full-scale mock-up was made to validate the design and the manufacturing process of the vertical displacement system

This system includes in particular:

- magnetic coupling motor located in the head of the device
- screw-nut connection with a recirculating ball screw
- spiral formed from the sensor cables wound together around the ball screw and working in extension/compression
- Endurance tests
 - Mock-up immersed in an upward flow of demineralized water
 - 2000 return trips corresponding to a continuous operating time of 200 hours (over distance of 1650 mm at a speed close to 10 mm/s)

3.3 Vertical displacement system

- Test results:
- cladding wear on several cables due to
 friction on the top part of the mock-up
- Very local traces of corrosion were observed on 3 catalog parts, as well as on the threaded rod of the ballscrew

- sizing of the motorization and the design
 of the kinematic chain were correct
- Overall, any major issues with design and process choices have been ruled out
 - Cable cladding perforation and local corrosion can be handled without much difficulty

3.4 Device head and connector box

A mock-up will be made to validate the assembly process of the device head given the restricted space for assembly

- Leakage, endurance and maintainability tests will be carried out to check
 - Motorization box and connector box are leaktight
 - Cycles of connection/disconnection of the underwater lines
 - The motor and all the connectors are replaceable in the event of failure

Background photo: TOTEM facility (Cadarache center) regularly used to test mock-ups of experimental devices under conditions representative of the JHR (pool with an equivalent depth)

4. Conclusion

- CARMEN devices will be ready to be manufactured by the end of 2025 thanks to:
 - work of optimizing the design
 - validation tests carried out through numerous mock-ups
- The on-board vertical displacement system will allow fast and very precise measurements
- A fleet of 3 CARMEN devices will be manufactured and available from the JHR start-up tests in order to map the core in an optimized time frame
- CARMEN's unprecedented measurement capabilities are expected to improve our knowledge of the JHR core, thus allowing:
 - an optimized thermal design of the irradiation devices
 - better analysis of the experimental results

Thank you

CEA CADARACHE

13108 Saint-Paul-lez-Durance

France

muriel.antony@cea.fr