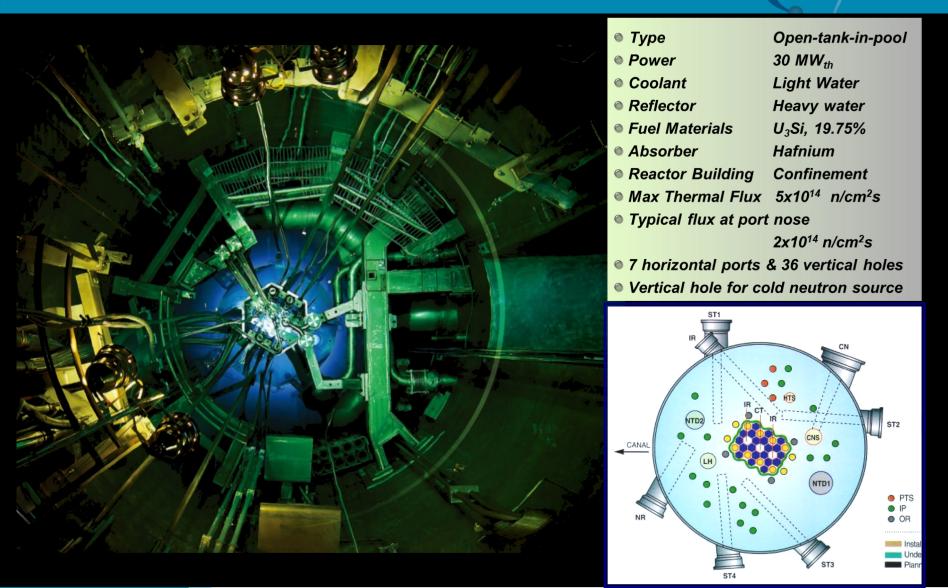
2023 TRTR & IGORR Research Reactor Conference

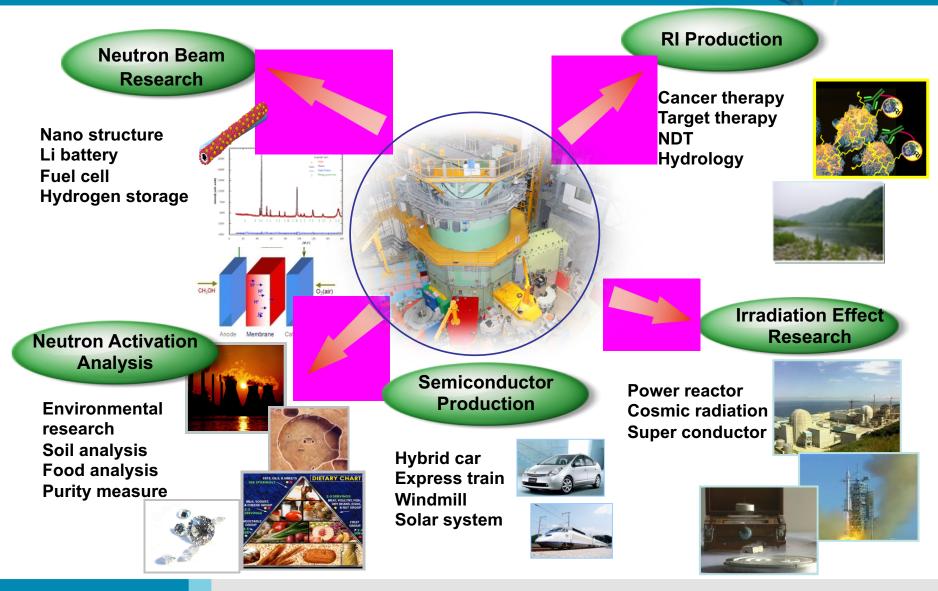
CURRENT STATUS OF HANARO OPERATION AND CHALLENGING ISSUES

June 21, 2023 Jinwon Shin HANARO Management Division

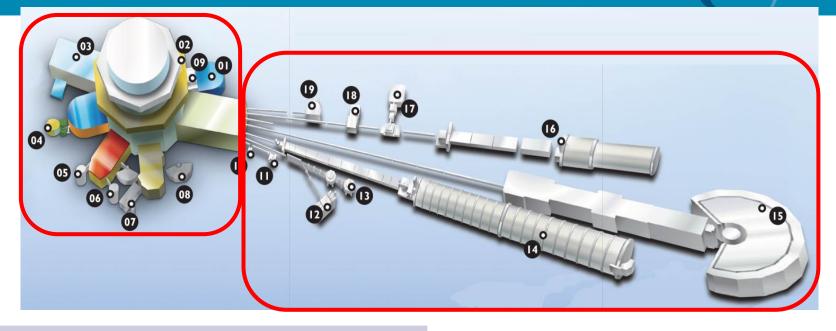
Korea Atomic Energy Research Institute



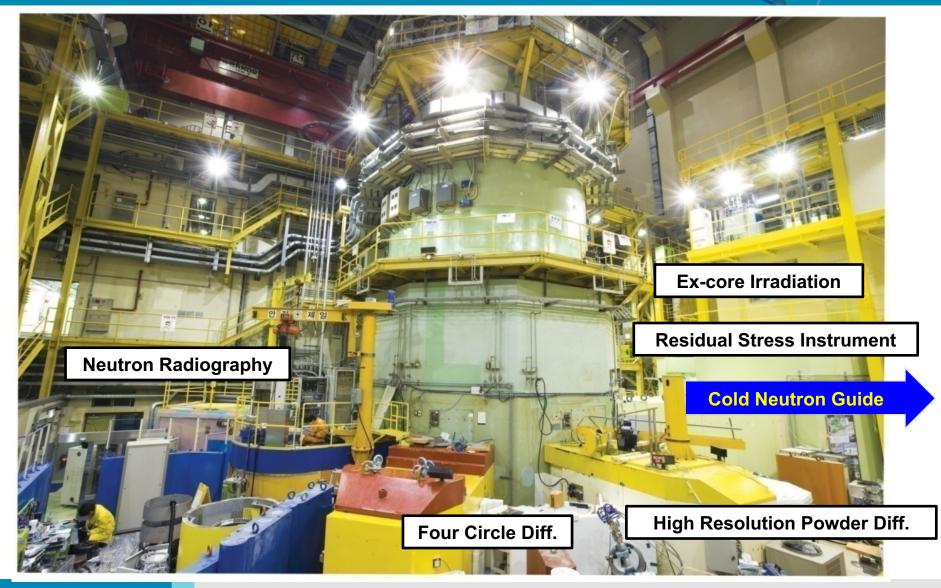
- HANARO Overview
- Operation
- Inspection and Maintenance
- In-Service Inspection
- Ageing Management Program
- Preventive Maintenance Program
- Recent Refurbishment of Facilities
- Regulatory Issues on Research Reactors in Korea
- Summary



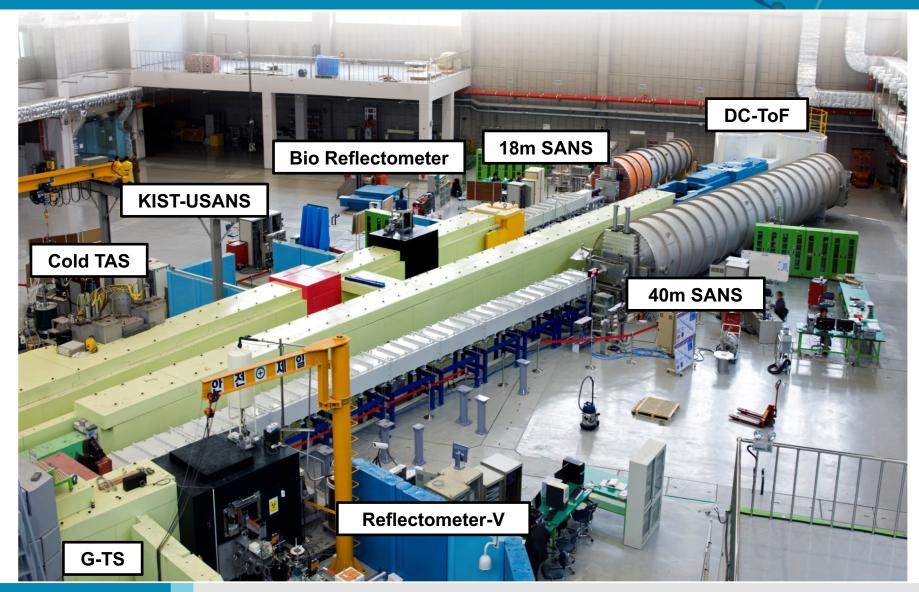
HANARO Overview



HANARO Utilization

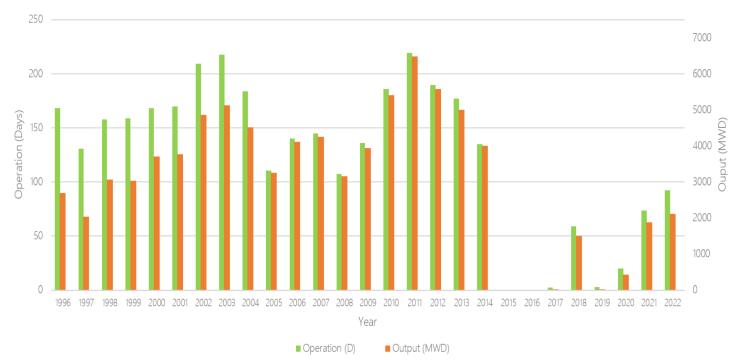

02 Ex-core Neutron irradiation Facility

- **09 Thermal Neutron Prompt Gamma Activation Analysis**
- **01 Residual Stress Instrument**
- **08 High Resolution Powder Diffractometer**
- **07 Four Circle neutron Diffractometer**
- N/A High Intensity Powder Diffractometer
- **06 Bio-Diffractometer**
- 05 Bio-diffractometer with neutron image plate Camera
- **04 Thermal neutron Triple-Axis Spectrometer**
- **03 Neutron Radiography Facility**


10 Guide Test Station

- **11 Vertical type REFlectometer**
- **12-13 Cold Neutron Activation Station**
- 14 40m Small Angle Neutron Scattering instrument
- 15 Disk-Chopper Time-of-Flight spectrometer
- **18 KIST Ultra-Small Angle Neutron Scattering instrument**
- **17 Bio-REFlectometer**
- 16 18m Small Angle Neutron Scattering instrument
- **19 Cold neutron Triple-Axis Spectrometer**

Instruments in the Reactor Hall

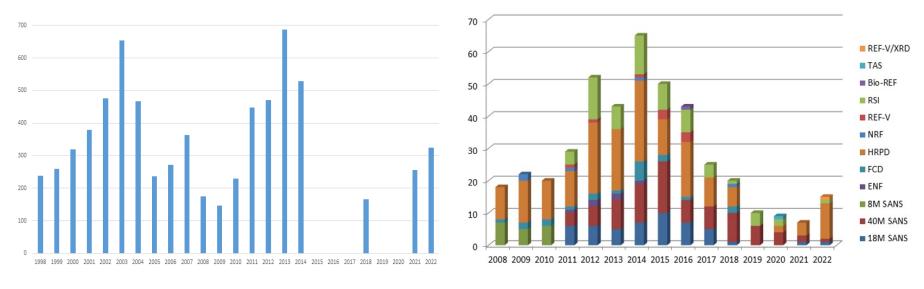


Example 1 In the Neutron Guide Hall

- Operation cycle: 4 weeks operation + 2 weeks maintenance
 - 6~7 periods operation per year was possible until July 2014.
- It recorded 219 days of operation in 2011 and has been on a declining trend with no operations from 2015 to 2017 for long shutdowns.

HANARO Operation(Cont'd)

2015.2 ~ 2017.12 Seismic reinforcement of reactor building



- 2018.7 Amendment of Nuclear Safety Act for research reactors in Korea
- 2018.12 ~ 2019.10 Special safety inspection for HANARO and utilization facilities by the government

- The number of neutron beam users peaked to 682 users in 2013
- The number of SCI publications peaked to 62 in 2014, continued to decrease as a result of long shutdowns and rebounded to 15 in 2022.

Number of neutron beam users by year

Number of SCI publication by year

KAERI HANARO Inspection and Maintenance

- Types of Inspection
 - Surveillance Inspection (SI)
 - Requirement of SAR and Tech. Spec.
 - Periodic Inspection (PI)
 - In-service Inspection (ISI)
 - Requirement of Nuclear Safety Act
- Inspection periods
 - Daily, weekly, monthly, quarterly, semi-yearly, yearly, and longterm period(18 months, 3 years,..)
 - 442 inspections per year
- Maintenance team and qualified companies perform inspections.
- Maintenance works are done depending on the result of inspections(Corrective or preventive maintenance).

HANARO In-Service Inspection

Component	Inspection item	Method		
Piping	Primary Cooling SystemEmergency Water Supply System	VT-1, VT-2, VT-3		
Heat Exchanger	- Primary Cooling Heat Exchanger support	VT-3		
Pump	 Primary Cooling Pump support Primary Cooling Pump Flywheel 	VT-3, UT		
Reactor Structure Assembly	- Reactor structure, reactivity control unit and beam tubes	VT-3		
	- Inner shell of reflector tank	Measurement (vertical straightness)		
	 Flow tube Shroud tube Control absorber rod Shut off rod 	Measurement (diameter)		

HANARO In-Service Inspection(Cont'd)

Reactor structure assembly and in-pool components

- Reactor structure, reactivity control unit and beam tubes(VT-3)

HANARO In-Service Inspection(Cont'd)

Safety related pump, heat exchanger and pipe

- Support for primary cooling pump, heat exchanger, and pipe(VT-1, VT-3)
- Primary cooling and emergency water supply system(VT-2)
- Fly wheel(UT)


Ageing management matrix(in use)

- Categorization of structure, system and components
- Input of ageing information of SSCs
- Prioritization
 - Consideration of safety, operability, life expectancy, and performance
- Planning maintenance and refurbishment
- Ageing management program(in development)
 - A systematic and comprehensive ageing management program will have been established until 2023.
 - Principles of HANARO AMP development
 - To maintain the SSCs with no reduction in performance or safety margins;
 - To prevent failures of critical SSCs
 - To understand ageing mechanisms

FID(Functional Importance Determination)

 Process used to assign a value of importance to a given component based on nuclear safety and operability.

PM: Preventive Maintenance CM: Corrective Maintenance

PM(Preventive Maintenance) Templates

- Templates for PM according to functional importance, environmental conditions and duty cycles of components
- PM templates is being built with the standardization of the task list and resources for each type of component.

Rev	2	PM Template							Class1	Pump		
Date	'10.11.05								Class2	PPHC		
FID(Functional Importance)												
Importance		Critical				Minor				Horizontal Dump		
Op. Frequency		High	Low	High	Low	High	Low	High	Low	Horizontal Pump		
Op. Environment		Severe		Mild		Severe		Mild				
PM Ta	ask	CHS	CLS	CHM	CLM	MHS	MLS	MHM	MLM			
Condition Mon	itoring Task	oring Task Frequency Reference							rence			
Vibration Analy	ysis	1 M	1M	1 M	1 M	3M	3M	3M	3M	EPRI, Indus	EPRI, Industry Template	
Lubricant Analy	ysis	3M	1F	3M	1F	1F	1F	1F	AR	EPRI, Indus	EPRI, Industry Template	
Performance M	onitoring	6M	6M	6M	6M	6M	6M	1F	1F	EPRI, Industry Template		
IR(Infra-Red) A	nalysis	6M	6M	6M	6M	12M	12M	12M	12M	epri, oe		
Operator Shift I	Log	15	15	1S	1S	1D	1D	1D	1D	EPRI		
Time Directed T	ask	Frequency Reference								ence		
Coupling check	(2F	3F	2F	3F	AR	AR	AR	AR (E, Industry Template		
Nozzle NDT		6F	AR	6F	AR	6F	AR	6F	AR (E, Industry Template		
Partial overhau	1	AR	AR	AR	AR	AR	AR	AR	AR I	PRI, Industry Template		
Failure Finding	Task											
Functional Test		AR	AR	AR	AR	AR	AR	AR	AR I	PRI, Industry Template		

Recent Refurbishment of Facilities

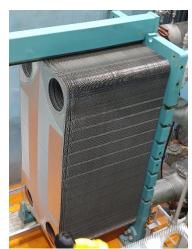
- 2015: Installation of additional emergency diesel generator
- 2017: Replacement of HANARO control computer system
- 2018: Replacement of pool radiation monitoring system
- 2020: Replacement of electric power distribution system

Additional emergency diesel generator

HANARO control computer system

Pool Radiation Monitoring

System



Electric Power Distribution System

Recent Refurbishment of Facilities(Cont'd)

- 2020: Replacement of seismic monitoring system
- 2022: Replacement of heat exchanger(2 sets)
- 2022: Replacement of cooling tower for CNS
- 2022: Replacement of CNS control computer system

Seismic Monitoring System

Heat Exchanger

Cooling tower for CNS

CNS control computer system

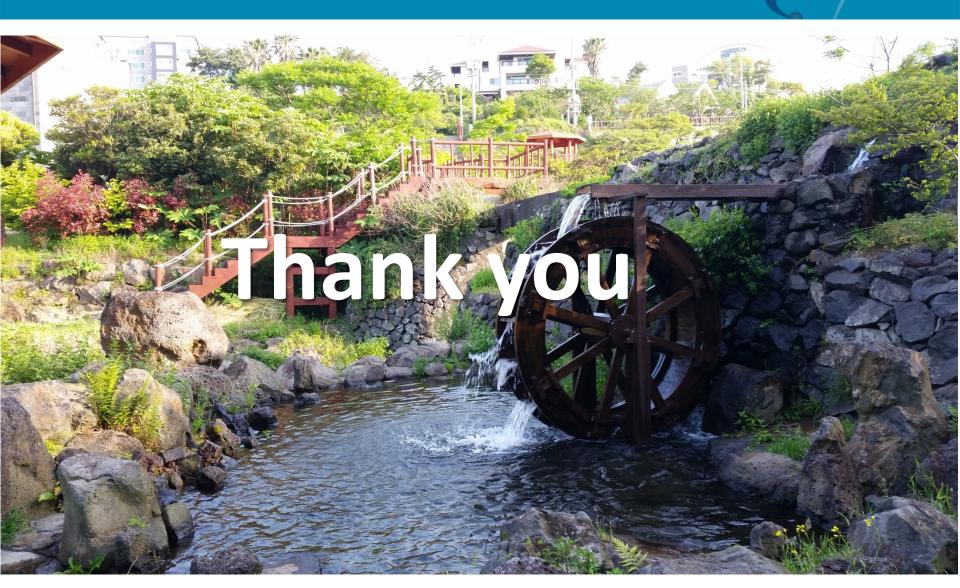
KAERI Regulatory Issues on RRs in Korea

- Regulations for research reactors has been strengthened since July 2018
 - All unplanned shutdowns of research reactors should be reported and regulatory approval be obtained for restart.

(NSSC Notice 2018-3, "Regulations for Reporting and Disclosure of Incidents and Malfunctions at Nuclear Utilization Facilities")

- Only events caused by the reactor protection system used to be reported before the amendment.
- Recently, it took several months to re-operate the reactor after unplanned shutdowns.

Efforts to change the regulations for research reactors


- KAERI is requesting the government for amending the Nuclear Safety Act in consideration of the characteristics of research reactors.
- In user group, various efforts is being made to issue to related parties about the need of HANARO operation and amendment of regulations.

Summary

- Operation of HANARO has been dramatically reduced since the shutdown for seismic reinforcement of the reactor building and the amendment of nuclear safety act on research reactors in KOREA
- Corrective or preventive maintenance works are done depending on the result of surveillance or periodic inspections
- A systematic and comprehensive ageing management program is being developed replacing current ageing management matrix
- Preventive maintenance templates are being made to reduce unplanned shutdowns for reliability and availability
- Efforts are underway to change the regulations on research reactors.

