

in HANARO's Control Rods

Jiye Jeong (jiye8713@kaeri.re.kr)

茶子カモ国カ

peoples trust

Korea Atomic Energy KAERI Research Institute

of HANARO

 \bigcirc

Analysis of the current excitation method

phase excitation method

Conclusions

CONTENTS

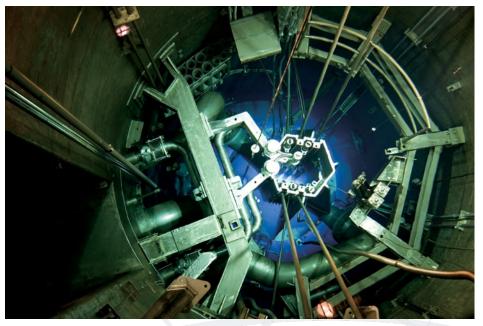
System of HANARO

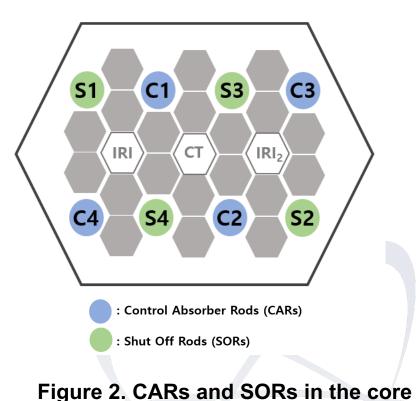
K

Ċ

Introduction of HANARO

- <u>H</u>igh-flux <u>A</u>dvanced <u>N</u>eutron <u>A</u>pplication <u>R</u>eactor
- 30MW (thermal)
- Safety Design
 - ✓ 318 tons of water tank
 - \rightarrow Cooling & radiation shielding
 - ✓ Natural convection if power failures
 - ✓ Available to open
 - \rightarrow Additional cooling water




Figure 1. Reactor Pool of HANARO

Korea Atomic Energ

KAERI Research Institut

Introduction of HANARO

- Four <u>Shut Off Rods</u> (SORs)
 - \rightarrow Shut down reactor rapidly and safely
 - \rightarrow Vertical fall by gravity
 - : inserting cylindrical hafnium tubes into the core
- Four <u>Control Absorber Rods</u> (CARs)
 - \rightarrow Regulate power output
 - \rightarrow Move up or down

Korea Atomic Energy

KAERI Research Institute

Control Absorber Rods Drive System

- Three parts : Absorber Element Assembly, CARs Drive Assembly, Rod Control System(RCS)
- **1. Absorber Element Assembly**
 - ✓ Control the reactivity of the core directly
 - Components : hafnium tubes, shrouds, tracks etc.

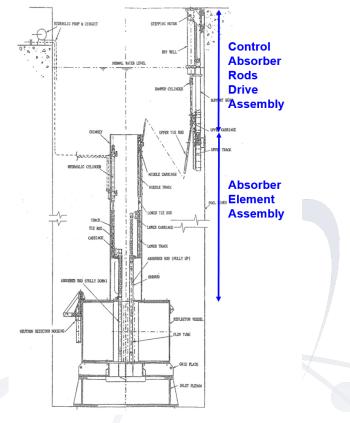
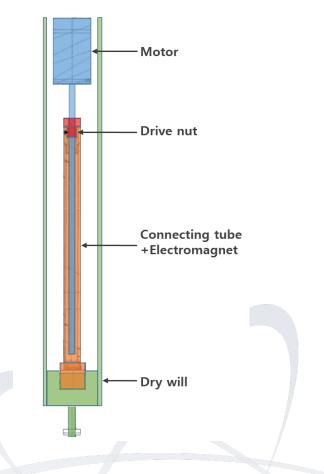



Figure 3. Configuration of CAR

Korea Atomic Energy

Control Absorber Rods Drive System

- 2. CARs Drive Assembly
 - Mechanical unit to control rods by receiving drive signals
 - CARs are moved by rotational motion of stepping motor.
 - Components : stepping motors, drive nut, electromagnet, lead screw etc.

- Control Absorber Rods Drive System
 - 3. RCS(Rod Control System)
 - ✓ I&C System to generate and deliver the driving signal of CARs.
 - ✓ Four parts : controller, counter card, motor driver and encoder

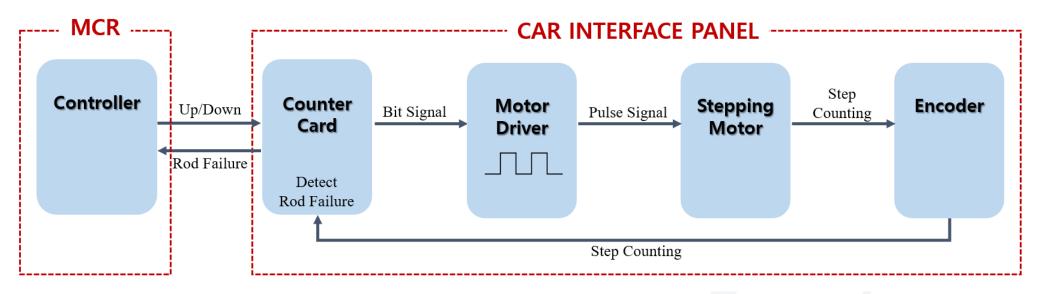


Figure 5. Driving Signal Flow

Korea Atomic Energy

KAERI Research Institut

- Control Absorber Rods Drive System
 - 3. RCS(Rod Control System)
 - a. Controller
 - \checkmark Generating the driving signals for CARs
 - ✓ Reporting failure of CARs
 - b. Counter card
 - Converting the signals(the number of steps, direction) into bit signals
 - Detecting failures such as step errors, time-out errors and power supply errors

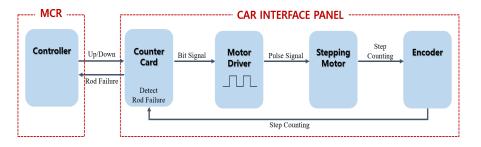


Figure 5. Driving Signal Flow

Korea Atomic Energ KAERI Research Institute

- Control Absorber Rods Drive System
 - 3. RCS(Rod Control System)
 - c. Motor driver
 - ✓ Converting the bit signals to pulse signals
 - d. Encoder
 - Checking and monitoring motor's movement (the number of steps)
 - \checkmark The information of movement is compared with order steps.
 - ✓ Generating the error if there is a difference greater than 3 steps

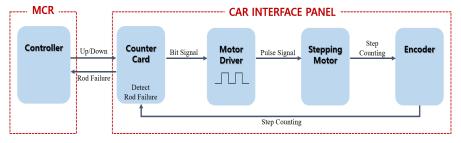


Figure 5. Driving Signal Flow

Korea Atomic Energy KAERI Research Institute

urrent Excitation

Korea Atomic Energy Research Institute

X

ø

ເ

0

C

Analysis of the Current Excitation Method

- One-phase Excitation Control System
 - Stepping motor : commonly used electromechanical device
 - One-phase excitation :
 - Requiring four steps per cycle
 - ✓ 1.8 degree movement per step

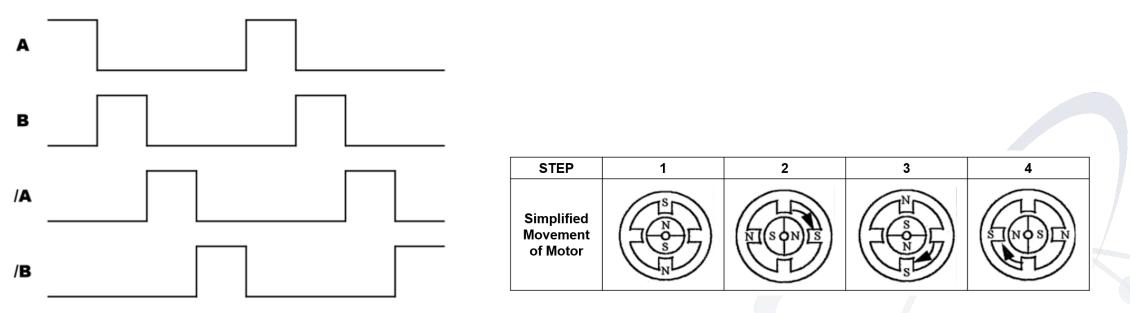


Figure 6. Sequencer of One-phase Excitation Control System

Analysis of the Current Excitation Method

- One-phase Excitation Control System
 - Lower power consumption
 - Easy to maintain and develop
 - Vibration and noise
 - Slip out of control rods from malfunction of stepping motor
 - \rightarrow Gap between the intended position and actual position
 - \rightarrow Abnormal alarm due to error
 - \rightarrow Reactor shut down due to the alarm

It can be solved by a two-phase excitation control system.

K

ø

ູ້

0

C

- Two-phase Excitation Control System
 - Higher power consumption with an increased motor strength
 - Lower vibration and noise
 - Prevent the control rods from slipping out
 - More complicated system
 - \rightarrow There are many consideration for implementing.

• (1) Upgrading the motor driver with the current stepping motor 2) Upgrading the motor driver with 8-lead stepping motor

- Upgrading the Motor Driver
 - It is efficient to prevent control rods from slipping.
 - → When one phase fails to move, the other phase can hold the control rods in place.
 - Ex) B fails to be excited.

/A remains excited. \rightarrow <u>NO SLIP</u>

 PLC¹) & <u>CLPD²</u> normally used for motor control system.

> More suitable for smaller-scale motor control systems with specific requirements.

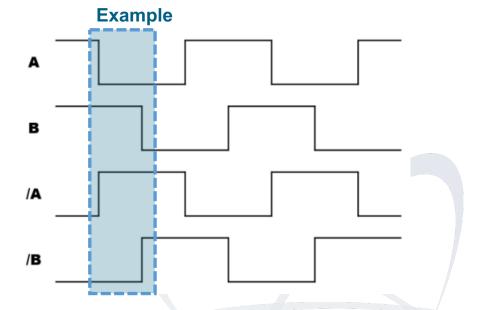


Figure 7. Sequencer of Two-phase Excitation Control System

- 1) PLC(Programmable Logic Controller) : It offers flexibility and robust processing power.
- 2) CLPD(Complex Programmable Logic Device) : It provides more fine-grained control over hardware design.

- Upgrading the Motor Driver
 - CLPD is generally composed of an excitation sequencer, a current regulator and a power module for motor driver (Figure 8).
 - Consideration
 - ✓ Add a diode or digital filter to maintain a constant torque and reduce irregular vibration
 - ✓ Utilizing current control to achieve smoother and more accurate
 - It depends on the specific control device being used. (types of CLPD or brand)

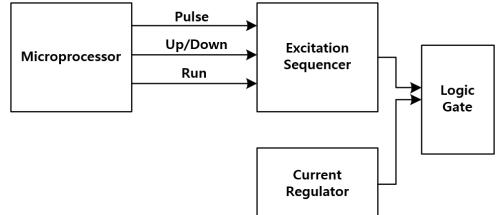
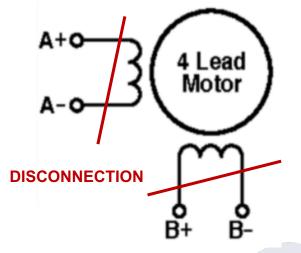



Figure 8. General Configuration of CLPD

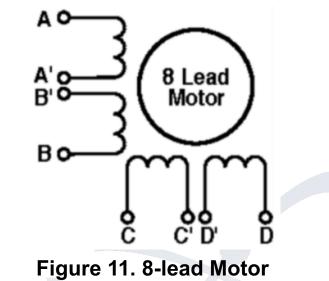
Upgrading the 8-lead Stepping Motor

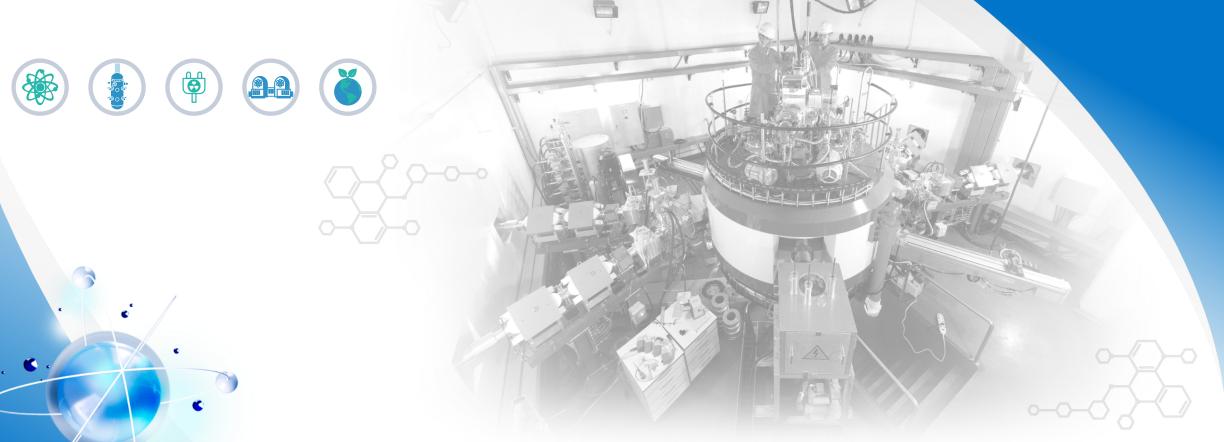
- 4-lead Motor : Possibility of malfunction
 - \rightarrow (Figure 9) If the physical wire of A-phase and B-phase is disconnected.

 → [Operational Experience]
One of the phases was loosely connected internally. And it became completely disconnected during operation of reactor.

Figure 9. 4-lead Motor

Figure 10. Malfunction


Upgrading the 8-lead Stepping Motor


• Physical redundancy design is necessary.

 \rightarrow 8-lead motor (Figure 10)

 \rightarrow The CCF(Common Cause Failure) in the four internal motor wires is very low probability.

- Consideration
 - \rightarrow Higher current consumption
 - \rightarrow More complexed control system

phase Excitation Control Method for Stepping Motor Used in HANARO's Control Rods

Conclusion

Conclusion

- Current : One-phase excitation control system
 - HANARO has four control rods operated by one-phase excitation control system.
 - Whichever phase fails.
 - \rightarrow It leads to slip of control rods.
 - \rightarrow It leads to a deviation from the desired position.
 - \rightarrow It leads to reactor shut down.

Conclusion

- Necessary to upgrade of rod control system
 - Two-phase excitation control system by upgrading the motor driver.
 - \rightarrow Several considerations such as constant torque or vibration
 - \rightarrow The current stepping motor can be used continuously.
 - Two-phase excitation control system with 8-lead motor
 - \rightarrow Physical redundancy design
 - \rightarrow This design is to reduce the unavailability by considering the CCF.
 - \rightarrow It costs more and takes longer, but is safer.

Conclusion

Further study

- Search the motor driver(CLPD) that can control the current stepping motor.
- Design the two-phase excitation control system by considerations that researched.
- If required, the unavailability of the control rod system with the new motor driver will be compared to the unavailability of the control rod system with the 8-lead motor. → criterion for assessing the need for implementing this design.

KAERI Research Institute

THANK YOU

jiye8713@keari.re.kr