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Overview

• Program Background
• Fuel System
• Material Interactions
• Summary
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Nuclear Powered Microreactors in 5 Years

Factory 
Fabricated

Transportable 
(Before And

After Service)

Self-
Regulating
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Microreactor Application Research, Validation and EvaLuation

Critical Characteristics

Reactor Thermal power ~100 kW

Nominal Electrical Output ~20 kWe

High-grade heat ~45 kWt at 450 ºC

Coolant, natural 
circulation

Sodium-Potassium 
eutectic (NaK)

Fuel U-ZrH

Reactivity Control 4 control drums (B4C)

Location INL, TREAT Facility

• Rapid prototype microreactor, ~ 100 kWth

• Integrate with intermittent power sources (solar and wind) to 
form a “first of its kind” nuclear coupled microgrid

• Share lessons learned with commercial developers
• Within 5 years

• Design
• Licensing
• Construction (at INL)
• Testing
• Operation
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Background – MARVEL Fuel Selection

• The 304 SS-clad U-ZrH fuel system has 
been selected for MARVEL (aka TRIGA 
reactor fuel)

• Fuel will be fabricated and purchased from 
TRIGA International
− Same materials, same fabrication 

processes, etc.
• US NRC has licensed TRIGA reactors since 

the 1950s with this fuel system
• U-ZrH used previously in NASA space 

reactors (SNAP* program)
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[1] History, Development and Future of TRIGA Research Reactors, International 
Atomic Energy Agency, Vienna, 2016. 
*System for Nuclear Auxiliary Power



Background – The MARVEL Fuel Element
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[1] Safety Evaluation Report on High-Uranium Content, Low-Enriched Uranium-Zirconium Hydride Fuels for 
TRIGA Reactors, NUREG-1282, U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, 
(1987).

• Fuel meat contains fissile (235U) and neutron-moderating (1H) 
species

• Excellent chemical stability in TRIGA reactor coolant (we’ll 
discuss NaK in a moment)

• High fission product retentivity and high-temperature stability
• Fuel meat and cladding retain integrity under large reactivity 

insertions and frequent power cycling
• From NUREG-1282, fuel safety limit defined by gas over 

pressurization inside the element [1]



NRC Guidelines: NUREG-1537

[1] NUREG-1537, Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors, U.S. Nuclear Regulatory 
Commission, Office of Nuclear Reactor Regulation, 1996. 
[2] J.A. Evans, R.T. Sweet, J. Dennis D. Keiser, MARVEL Reactor Fuel Performance Report, INL/RPT-22-68555-Rev000, DE-AC07-05ID14517, 
US DOE Office of Nuclear Energy,  (2023).

• MARVEL fuel authorization strategy follows US NRC regulatory guidelines:
• Completed by MARVEL Program (see INL/RPT-22-68555 MARVEL Reactor Fuel 

Performance Report [2])
• Describe history of fuel type (previous tests, qualifications, etc.)
• Describe geometries, composition, thermophysical properties, etc.
• Describe irradiation performance relationships
• Determine operational limits
• Assess risk of reaching limits
• Information and analyses “should be current”
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Background – Space Nuclear Auxiliary Power (SNAP) Program

• NASA’s SNAP 
program developed 
nuclear reactors and 
RTGs for space 
missions in the 
1950s and 1960s

• Post-irradiation 
examination 
following the SNAP-
10A “extended BDBA 
test” (conditions held 
for 10,000 hours) 
showed no evidence 
of incipient failure
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[1] H. Dieckamp, Nuclear Space Power Systems, Atomics International, Canoga Park, 
California, 1967. 

MARVEL SNAP-10A
Fuel Type U-ZrH U-ZrH

wt% U 30 10
Enrichment (%) 19.75 93

Gas gap Air (1 atm) He (0.1 atm)
Cladding Type 304 SS Hastelloy-N a

# Fuel Elements 36 37
Coolant NaK NaK

Fuel Temp (°C) 565 585
Power (kWth) 85 34

Control BeO + poison (B4C) Be wedges
(a) Included a thin film (internal, 2-4 mils thick) of 
Solaramic (glassy coating BA)



MARVEL Fuel System Overview
• 36 Elements each composed of:

− 5 U-ZrH fuel meats clad in Type 304 SS

• Annular with Zr rod

• 30 wt% U, 19.75 % enriched

• H/Zr: nominally 1.6

− 2 graphite axial neutron reflectors

− Peak cladding temperature: ~550 ºC

• Primary coolant: Sodium-Potassium (NaK) eutectic

− 21 wt% Na, 79 wt% K [1]

− Eutectic temperature: -13 ºC [2]

− Boiling temperature: >785 ºC [2]

[1] C. W. Bale, K-Na (Potassium-Sodium), Binary Alloy Phase Diagrams, II Ed., Ed. T. B. Massalski, Vol. 3, 2376-2378, 1990
[2] O. J. Foust, “Sodium-NaK Engineering Handbook: Volume I, Sodium Chemistry and Physical Properties”, Gordon and Breach, 1972
[3] T. Lange, et al., “MARVEL Core Design and Neutronics Characteristics”, American Nuclear Society Annual Meeting, 2022

[3]

MARVEL Core schematic
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A Few Fuel Performance Phenomena to Consider
• Hydrogen redistribution and dissociation (fuel)

• Internal gas pressure

− From as-fabricated air in gas gap, fission gas, hydrogen

• Oxygen interactions (with fission products, with graphite, coolant impurity)

• Geometric changes (Zr rod, fuel meat, cladding, and graphite reflectors)

− Thermal expansion, fission/void growth, crystallographic changes of fuel 

as a result of H2 redistribution, swelling, radiation-enhanced creep

• Radiation effects

− Hardening, embrittlement, etc.

• Fuel-cladding mechanical interactions (FCMI)

• Fuel-cladding chemical interactions (FCCI)
• Coolant-cladding interaction
• Hydrogen embrittlement (cladding)
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U-ZrH / SS 304 diffusion couple
800 ºC, 1 hour [1]

As-irradiated 30/20 TRIGA fuel [2]

Fuel-Cladding interaction: As-fabricated and irradiated
• At 730 and 800 °C, for as-fabricated TRIGA fuel 

(U-ZrH, Type 304 SS) [1]
− Of primary concern: Fe-U eutectic (719 °C)
− No evidence of eutectic formation after a 1-hour 

soak

[1] D. D. Keiser, et al., “High temperature Chemical Compatibility of As-Fabricated TRIGA Fuel and Type 304 Stainless Steel Cladding”, INL/EXT-12-27153, 2012
[2] D. Keiser. Jr., J.-F. Jue, F. Rice, E. Woolstenhulme, Post irradiation examination of a uranium-zirconium hydride TRIGA fuel element, Front Energy Res 11 (2023) 12.
[3] Chatain S., Guéneau C., Labroche D., Rogez J., and Dugne O., Thermodynamic Assessment of the Fe-U Binary System, J. Phase Equilib., Vol. 24, 2003, p 122-131

• As-irradiated TRIGA Fuel Analysis 
(20% burnup) [2]
− No evidence of FCCI or FCMI was 

observed

Fe-U eutectic
- 719 ºC
- ~90 wt% U, 10 wt% Fe

[3]
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MARVEL Fuel Meat and Cladding Compatibility with Hot NaK
Coolant

• Fuel Meat / NaK
− No physical or microstructural changes of U-ZrH fuel were observed in NaK up to 

~540 °C [1]
• Cladding / NaK

− At temperatures above the peak cladding temperature for MARVEL
• Intergranular corrosion, pitting corrosion, and general corrosion has been 

observed [2, 3]
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[1] J. Vetrano, Delta-Phase Zirconium Hydride as a Solid Moderator, BMI-1243, Battelle Memorial Institute, Columbus, Ohio, 1957.
[2] C. A. Zimmerman, “Corrosion of Type 316 Stainless Steel in NaK Service – A Literature Survey”, IDO-146651.
[3] M. A. Perlow, “SNAP-2 Primary Coolant Development”, NAA-SR-6439, North American Aviation, 1961.
[4] Weeks, J.R. and H.S. Isaacs, Corrosion and Deposition of Steels and Nickel-Base Alloys in Liquid Sodium, in Advances in
Corrosion Science and Technology, M.G. Fontana and R.W. Staehle, Editors. 1973, Springer US: Boston, MA. p. 1-66.

Time [h] Temperature 650 °C Temperature 760 °C
Attack depth [µm] Observation Attack depth [µm] Observation

1500 0 No observable attack 0
Slight evidence of 
decarburization

2500 35.5 Intergranular 35.6 pitting corrosion
3500 General corrosion 33 intergranular corrosion
4500 338.1 Pitting 58.4 decarburization

Corrosion of Type 304 SS in liquid NaK-78, O2content: <20ppm

[4]

Corrosion rates of Type 304 SS in 
high-velocity sodium at 760 °C



Ongoing analyses include 3-dimensional, time-
dependent conditions

180˚ variation after core 
radial power profile 

30˚ variation after nearest 
neighbor rods

Resulting composite 
temperature variation

180˚-symmetric TRIGA fuel element model

In order to show how the fuel rod pitch will change with extreme 
temperature/irradiation (flux/fission rate) gradients, a representative 3D 
model is used.

• Azimuthally- and axially-varying temperature/irradiation capability Graphite Pellets

U-ZrH Fuel Pellet

SS304 Cladding

Zirconium Rod

Hydrogen redistribution in the fuel (i.e. evolution of the H/Zr ratio) may 
alter fuel behavior  

• Constitutive properties (including H/Zr dependance) are used. 
• Hydrogen diffusion model is currently being investigated



Summary
• The MARVEL Reactor has design based on TRIGA reactors and the 

SNAP experiments
• MARVEL fuel authorization strategy follows NUREG-1537 guidance
• MARVEL reactor fuel performance is bounded by already-existing fuel 

licenses
− Maintains structural integrity, geometric stability, and behavior is stable 
and predictable under bounding accident conditions

• MARVEL will be constructed and deployed at the Idaho National 
Laboratory 

• MARVEL will be integrated into a “first of its kind” nuclear-coupled 
microgrid
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