NBSR Path to Equilibrium Core

Osman Sahin Celikten,

Ph.D., Nuclear Engineer NIST Center for Neutron Research, 100 Bureau Dr., 20899 Gaithersburg, MD, USA

National Institute of Standards and Technology U.S. Department of Commerce

1R

IGORR

Disclaimer

Certain commercial equipment, instruments, or materials are identified in this study in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Outline

Introduction

- National Bureau of Standards Reactor
- Startup Core

Limitations

- Technical Limitations
- Administrative Limiting Conditions
- Alternative Fuel Management Scheme Framework
- Recovery Fuel Management Scheme
- > New Startup Core Cycle 655
- **Cycle 656**
- Summary and Discussion

National Bureau of Standards Reactor

- NCNR is one of the USA's primary resources for neutron research
- First criticality in 1967
- Originally designed for 10 MW operation
 - Relicensed at 20 MW
- Heavy water cooled and moderated
- February 3, 2021, partial fuel melting incident
- More than 2 years recovery period
- Restart authorized in March, 2023
- Currently in low-power testing mode

NIST

Introduction

- > After the incident in February 2021, debris found on several fuel elements
- > All fuel in Cycle 655 are deemed unusable
- Original Fuel Management Scheme (OFMS)
- New core can be constructed utilizing
 - Burned elements (mostly 7th-Cycle)
 - Limited number of fresh fuel elements
- Limitations
 - Technical
 - > Administrative

Technical Limitations

The confines of NBSR Technical Specifications and UFSAR

- Up to 45.0 kilograms ²³⁵Uranium of any enrichment & less than 5.0 kilograms fresh.
- NBSR is authorized steady-state power levels up to a maximum of 20 megawatts (thermal).
- The reactor fuel cladding temperature shall not exceed 842°F (450°C) for any operating conditions of power and flow.
- > The maximum core excess reactivity shall not exceed 15% $\Delta \rho$.
- The reactor shall not be operated unless the shutdown margin provided by the shim arms is greater than 0.757% Δρ (\$1.00) with:
 - In any core condition, and
 - All movable experiments in their most reactive condition

Technical Limitations

The confines of NBSR Technical Specifications and UFSAR

- > The reactor shall not operate unless all grid positions are filled
- The average fission density shall not exceed 2 x 10²⁷ fissions/m³ (73% theoretical burnup)
- > The reactivity insertion rate shall not exceed 5 x $10^{-4} \Delta \rho$ /sec .
- > The minimum CHFR is dictated by the 80/80 statistic
 - minimum CHFR of 1.19 for an 80% probability of no departure from nucleate boiling (DNB)
 - > 1.78 for a 99.9% probability of no DNB

Administrative Limiting Conditions

- > The NBSR inventory has limited number of 7th cycle elements
- Only limited inventory being unirradiated or not selfprotecting. (10 CFR 73.60 for details)
- Time constraints

Alternative Fuel Management Scheme Framework NIST

- > Why is it developed?
 - For trial multiple schemes
 - Easy to assess
 - Reassessment of reloading in the operation
 - Using for the following cycles

Assessed Criteria

- Excess reactivity at SU
- Enough Shim Reactivity (Worth)
- Maximum power peaking
- Minimum CHFR
- Minimum OFIR

License Amendment Requests (LARs)

"Operate with Debris in the Primary Coolant System" (ML23020A911)

* "Alternative Fuel Management Scheme" (ML23055A300, ML23033A114, ML23033A115, and ML23033A119)

5.8.800(4.6)												
UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-001												
(0.4) (****												
, containy 1, 2020												
Dr. Thomas H. Newton, Deputy Director National Institute of Standards and Technology												
NIST Center for Neutron Research U.S. Department of Commerce												
100 Bureau Drive, Mail Stop 6101 Gaithersburg, MD 20899-6101												
SUBJECT: NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY – ISSUANCE OF AMENDMENT NO. 14 TO RENEWED FACILITY OPERATING LICENSE NO. TR-5 FOR THE NATIONAL BUREAU OF STANDARDS TEST REACTOR RE: REVISION TO THE SAFETY ANALYSIS REPORT TO OPERATE WITH DEBRIS IN THE PRIMARY COCLANT SYSTEM (EPID L-3222/LLAVIS2)												
Dear Dr. Newton:												
The U.S. Nuclear Regulatory Commission (the Commission) has issued the enclosed Amendment Nr. 6 14 0 Renewed Failly Operating Locares Nr. F56 for the hadron limitude of Standards and Technology National Bureau of Standards Test Reactor (MSR). This amendment consisted of the resource processing strength (SA) (the resource Dynamic Amendment Constant) of the resource of the resource of the resource of the method of the resource of the resource of the resource of the Accession No. ML222308800), as supplemented by letter dated Decomber 13, 2022 (ML232304064). Specifically, the amendment models ther ASA to adverse potential impacts to solid years described in related to 11 of the SAR as a result of some down remaining in the NBSR primary codent system following the February 32, cost, event.												
This license amendment will inform the decision of the Commission whether to approve restart under Tille 10 of the Code of Federal Regulations section 50.36(c)(1) related to the February 3.2021, event, but the restart decision will not solely reprior in this license amendment.												
	<image/> <section-header><text><text><text><text><text><text><text></text></text></text></text></text></text></text></section-header>											

Core Loading Optimization Strategy

- Metaheuristic combinatorial optimization
- Optimize excess reactivity, maximum PPF, and core PPF balance for a cycle
- Fast-response surrogate model of MCNP
 - Voting ensemble regressor for robustness
- Single-solution model (Exploitation)
 - Updating utility tables based on the reward/penalty
- Population model (Exploration)
 - Recombination of utility tables of better solutions

Core Loading Optimization Strategy

- Optimizer model is fully coupled with MCNP
 - Update initial loading file, processing of MCNP output
- Active learning strategy
 - Propose core loading schemes to improve the surrogate model
 - Re-train the surrogate model if necessary

Search for the optimal core

- Longer search to approximate the global optimum of the surrogate model
- Run MCNP for actual values

New Startup Core – Cycle 655

Opt53

M5317

Cycle 656

Case125

M12510

Recovery Fuel Management Scheme

4 Fuel E	lemen	ts Case																					
			1		2		3		4		5		<u>6</u>	7		8		9		1	10		
			ORDER 13		ORDER 4		ORDER 4		ORDER 4		ORDER 4		ORDER 4	DER 4 ORDER 4		ORDER 4		ORDER 4		(ORDER 4		
Cycle	U-235		Cycle 655		Cycle 656		Cycle 657		Cycle 658		Cycle 659		Cycle 660	Cycle 661		C	ycle 662	Cycle 663		(Cycle 664		
Burned	mass			mass		mass		mass		mass		mass		mass	ma	SS	mass		m	nass		mass	
() :	350	13	4550	4	1400	4	1400	4	1400	4	1400	4	1400	4	1400	4	1400	4	1400	4	1400	
1	. :	318		0	13	4134	4	1272	4	1272	4	1272	4	1272	4	1272	4	1272	4	1272	4	1272	
2	2	286		0		0	13	3718	4	1144	4	1144	4	1144	4	1144	4	1144	4	1144	4	1144	
3		254		0		0		0	13	3302	4	1016	4	1016	4	1016	4	1016	4	1016	4	1016	
4		222		0		0		0		0	10	2220	4	888	4	888	4	888	4	888	4	888	
5	5	190		0		0		0		0		0	6	1140	4	760	4	760	4	760	4	760	
6	5 :	158		0		0		0		0		0		0	4	632	4	632	4	632	4	632	
7	'	126	17	2142	13	1638	9	1134	5	630	4	504	4	504	2	252	2	252	2	252	2	252	
		# of Eleme	n 30		30		30		30		30		30	30			30		30		30		
		Total Mass		6692		7172		7524		7748		7556		7364		7364		7364		7364		7364	
		Difference	From Origin	-688		-208		144		368		176		-16		-16		-16		-16		-16	
		7th cycle ne	eeded	54																			
		7th cycle av	vailable	53																			
5 Fuel E	lemen	ts Case																					
			1		2		3		<u>4</u>		<u>5</u>		<u>6</u>	<u>7</u>		8	<u>8</u> <u>9</u>		<u>10</u>		<u>10</u>		
			ORDER 13		ORDER 5		ORDER 4		ORDER 4		ORDER 4		ORDER 4	ORDER 4		0	ORDER 4 ORD		ER 4	(ORDER 4		
Cycle	U-235		Cycle 655		Cycle 656		Cycle 657		Cycle 658		Cycle 659		Cycle 660		Cycle 661	C	ycle 662	Cycle	663	(Cycle 664		
Burned	mass			mass		mass		mass		mass		mass		mass	ma	ss	mass		ma	nass		mass	
0) 3	350	13	4550	5	1750	4	1400	4	1400	4	1400	4	1400	4	1400	4	1400	4	1400	4	1400	
1	. 3	318		0	13	4134	5	1590	4	1272	4	1272	4	1272	4	1272	4	1272	4	1272	4	1272	
2		286		0		0	13	3718	5	1430	4	1144	4	1144	4	1144	4	1144	4	1144	4	1144	
3		254		0		0		0	13	3302	5	1270	4	1016	4	1016	4	1016	4	1016	4	1016	
	. :	222		0		0		0		0	10	2220	4	888	4	888	4	888	4	888	4	888	
5	5	190		0		0		0		0		0	6	1140	4	760	4	760	4	760	4	760	
e	5	158		0		0		0		0		0		0	4	632	4	632	4	632	4	632	
7		126	17	2142	12	1512	8	1008	4	504	3	378	4	504	2	252	2	252	2	252	2	252	
		# of Elemen 30			30		30		30		30		30		30		30		30		30		
	Total Mass			6692		7396		7716		7908		7684		7364		7364		7364		7364		7364	
	Difference From Origi		From Origin	-688		16		336		528		304		-16		-16		-16		-16		-16	
	7th cycle needed		eeded	eeded 50																			
	7th cycle available		vailable 53																				

NIST

Summary and Discussion

- Although All technical and administrative limitations, NBSR cores were constructed with seventeen 7th-cycle and thirteen fresh fuel elements and became critical on March 16, 2023, after Feb 2021.
- The measurements and the calculated results with AFMS were acceptable. Calculated results are conservative
- > A core loading framework was developed:
 - Alternative Fuel Management Scheme (AFMS)
- > An optimization algorithm was developed by using Machine Learning algorithms (Not included in the AFMS procedures, used internally for initial load determination only):
 - > AFMS Optimizer
 - > Automatically configure cores, try, and assess.
 - Gradually learning by each core configuration

- Cycles 655 and 656 were prepared with AFMS
- Waiting for the full power operation to complete the next cycles
- Expecting the approximate OFMS loading can be reached after 662 but the OFMS loading mass could be reached 2 cycles earlier if the 4 Fuel Element Case is adopted

