JUNE 2023

COMBINED RADIATION ENVIRONMENT DAMAGE IN ELECTRONIC DEVICES

MICHAEL SHERIDAN, WILLIAM S. CHARLTON, AND MARK ANDREWS

The University of Texas at Austin

MICHAEL W. GREGSON AND DANIEL J. DORSEY

Sandia National Laboratories

Motivation

- Current practice of evaluating radiation damage in electronics generally assumes that the effect from different stresses in a combined environment are independent
 - and can be summed linearly
 - this limitation is because there are few facilities that can examine these stresses in a combined or ordered manner
- Damage to electronics in combined ionization damage (photon/electron) and displacement damage (neutron/ion) environments could be higher than the sum of the two environments if there is a synergistic effect
- Better understanding can help improve survivability of space-based electronics especially when subject to solar events

Previous Work

- Recent work by Yan et al. (NIMA, Vol. 831, pp. 334-338, 2016) suggested that a synergistic effect might occur in OP07 operational amplifiers
- However, the dosimetry methods used in this work were questionable making it difficult to draw conclusions
- Thus, in our work, we developed a methodology that could be used to study combined environment effects using a research reactor and pure TID system with detailed dosimetry measures

Fig. 5. Response of the input bias current I_{ib} under the three radiation environments.

UT-NETL Reactor

- The University of Texas at Austin (UT-Austin) Nuclear Engineering Teaching Laboratory (NETL) is home to a 1.1 MW TRIGA Mark II reactor
- Initial criticality in 1992
- Reactor is principally designed as a neutron beam facility but include numerous in-core irradiation facilities

Neutron Irradiation

- Neutron irradiations were performed using the beam port 1-5 position at the UT-NETL
 - 1.1 MW TRIGA Mark II reactor
 - This position is directly adjacent to the reactor core and allows for a dry irradiation port with active cabling for devices
 - This delivers to the sample a 1-MeV (Si) Eq. fluence of 2.10E12 n/cm² per MJ of reactor energy

Neutron Irradiation (continued)

- Significant gamma flux is present from the reactor in the BP 1-5 position
 - A one-inch-thick cylindrical lead filter is used to reduce gamma dose to 3 krad per MJ of reactor energy

Testing Boards

- Circuit boards were developed to mount LM741 opamps during irradiation
- The electronics measured inverting and noninverting input bias current and slew rate before, during, and after irradiation

Dosimetry

- The reactor position used in these irradiations was well characterized using multiple foil irradiations to unfold a detailed flux spectrum
 - During irradiations, nickel foils and sulfur pellets were used to measure the 1 MeV (Si) Eq. neutron fluence in reactor irradiations
- TLD-400s were used in all irradiations to measure the gamma dose provided to samples

Photon Irradiation

- Photon irradiation was done using the MultiRad 350 at UT-Austin's Dell Medical School
- The MultiRad is calibrated to measure dose to tissue and the team used TLD-400s read out by the RML at SNL to measure the appropriate dose to silicon

Slew Rate

- Slew rate is the maximum rate of change of an opamp's output voltage
 - It is a measure of performance of the output signal for an opamp
- Across multiple photon-only irradiations the slew rate degradation showed similar degradation
 - If the opamp did not fail, it had the opportunity to recover after the irradiation
- Growth in slew rate immediately following irradiation was not seen in neutron only irradiation

Photon-only

Passive Slew Rate

- Measurements were made both actively and passively
 - Active measurements show results as current passes through it
 - Passive measurements allow for analysis of op amps when current is not running through it
- Significant differences are seen between passive and active measurements
 - Potentially due to time or current annealing effects

Input Bias Current

- Input bias current is the current drawn by the input terminals of the opamp
 - It is a measure of the performance of the input stage of the device
- The change in input bias current was shown to increase with respect to radiation dose

Photon-only

Challenges

- Reactor environment contains both neutron and gamma fluxes
 - While gamma dose in reactor environment is small compared to gamma irradiator it is not insignifcant and must be accounted for
- Due to radioactivation, current test setup results in delay between neutron and photon irradiations
- Currently effects are measured as a function of cumulative dose
 - However, dose rate effects likely play a part in damage to the device

Future Work

- Future work will irradiate circuit boards with both photons and neutrons
- Photons will continue to be produced by the MultiRad 350 and neutrons by the NETL reactor
- There will be a time delay between irradiations due to instruments being at different facilities and the necessity to allow for decay of neutron irradiated devices
 - Currently using a 7-day delay between irradiations
- In an ideal setup, a TID irradiation facility would be built in the reactor facility such that a shorter time delay could occur between TID and displacement damage stresses to devices

Acknowledgements

- Sandia National Laboratories
 - This work is funded under PO 2049205 by Sandia National Laboratories
- Dave Vehar and the Radiation Metrology Laboratory at Sandia
 - provided all the TLD measurements for this work