

Recent I&C Improvements at the Missouri S&T Reactor

Presented By: Ethan Taber

June 19, 2023

TRTR-IGORR 2023 Conference

About the MSTR

The Reactor

- > 200 kW pool-type
- Fuel
 - MTR-type
 - Silicide (U₃Si₂-Al)
 - Curved plate
 - 19.75% U-235
- Variable core configurations

About the MSTR

The Facility

- **Training, Research,** and **Education** facility
- Part of Missouri S&T's Department of Nuclear Engineering and Radiation Science (NERS) and College of Engineering and Computing (CEC)
- **First** reactor in the State of Missouri (1961, R-79).
- ~1,000 visitors per year.

About the MSTR

The Staff

- Primarily a student-operated facility.
 - Very active student operator training program (10-40 students)
- One full-time employee (Reactor Manager)
- Second full-time employee (Reactor Engineer) hired^{*} October 2022
- **SRO:** 1-4 (1 as of Summer 2023)
- **RO:** 5-10
- Student Assistants: 1-4

Instrumentation and Controls of the MSTR

As of 2018

5 NI Channels

- 2 Safety (Linear, UIC)
- Startup (Log, FC)
- Linear (Scaled, CIC)
- Log and Linear (CIC)
- PLC-based Control System
- Relay-based Safety System

Instrumentation and Controls of the MSTR As of Today

- "New" Linear Channel signal processing drawer
- All digital recorders
- Control system modifications
 - Refactored ladder logic
 - Inter-PLC communications simplified
 - Dense I/O

As Found

- Original (from GA) was rebuilt numerous times
- Design implemented in 2014
- Breadboard
 - Loose connections
 - Contact corrosion/oxidation

Modification Process

- Re-use 2014 design
 - Import to ECAD
 - Establish BOM
- Find suitable US PCB maker
- Get new components
- Treated as "Like-for-like"

Modification Process (Cont.)

- Assemble in house
 - Need to establish good procedures
 - Solder, flux, and cleaning
 - Lead length and consistency
- Install
 - Reuse existing enclosure
 - 3D printed mount
- Test and Calibration

Lessons Learned

Use new enclosure

- Better control over bulkhead connectors
- Better control over grounding
- Should have incorporated HV components into design
 - Original HV resistors and capacitors soldered to enclosure
 - Would eliminate weak connection
- Assign serial numbers to new/manufactured components

Historical Aspects

- Trace relied upon for startup (over drawer)
- Plant original
 - Vacuum Tube-based
 - Only four decades of range
 - Input: 0-10 mV
- Paper and Marker
 - \$50/roll (up to \$110 as of June 2023)
 - 33 hours of runtime

Impetus and Modification

- Ran out of paper in February 2022
 - Very long production timeline from US vendor (NET April)
 - Right before first commercial project in over a decade
- Significant work already towards project (academic break was original target)

- Yokogawa DX2000 on-hand
 - Needed watchdog and math modules
 - Capture Startup (log count rate) and Log N Power signals
 - 8 decades (inner 5 for LCR)
- ▶ 10 CFR 50.59
 - Non-safety-related
 - Screened-in (MSTR digital)
 - Evaluation, Committee Review

Modification Process

- Startup Channel Drawer
 - Already internal 0-10 VDC signal for log count rate
 - Installed signal conditioner
 - Calibration "de-skewed"
- Rod Withdrawal Prohibits
 - Recorder Off (fail and stop)
 - <2 CPS

- Log and Linear Recorder
 - Pull leads for Log Power
- Reactor Control System
 - HMI Cleanup
 - Calibration Screen
 - Interlock logic

Lessons Learned

- During testing, break in connection for interlock
- Spare wires in bundle
- Drawer circuit protection
 - Only signal processing side of drawer was fused
 - Later installed fast breaker

NI Pre-modification

Old Linear Equipment

- Keithley 485 Picoammeter
 - Inverted ± 2 VDC signal output
 - Very noisy range switching
- Curtiss-Wright CIC power supply
 - Repaired but effectively original
 - Vacuum tube-based

▶ Recorder (L&N)

- Original, vacuum tube-based
- 0-10 mV
- "Inject" test signals by manually repositioning cam
- Autocontrol setpoint and error signal

Reactor Control System

- Wiring
 - Almost no color standardization or labeling
 - Poor practices in ferrule use
 - AC and DC adjacent (noise)
- ▶ I/O Modules
 - Sparse/low density
- Ladder logic

Signal Processing Drawer

- Gamma-Metrics built 1992 (2002 refresh)
- Substantial testing in 1990s
- Only ever used as temporary CIC power
- Internal trips and test signals
- Servo control and interface (currently unused)
- Isolated analog outputs

Recorders

- > Yokogawa DX2000s on-hand
 - Yes, more of them
 - Also needed watchdog and math modules
 - 125 ms record interval (25 ms)
- Period
 - Native trace 0-10 VDC
 - Custom display and sightlines
 - Calculate period

Recorders

▶ Linear

- 0-10 VDC: 0-125%
- Capture Linear Demand (scaled)
- Capture Linear Power
- Process 0-40% and 0-125% switching

Improved Reactor Control System

Linear Channel and Recorders Improved Reactor Control System

Lessons Learned

Lack of vendor/manufacturer support is tough

- Initial support for testing picoammeter board (leakage currents)
- No support for "remote control" functions
- Unused equipment still ages
 - Switch-mode power supplies (Linear Channel CIC boards)
- Very big project for MSTR
 - Staffing limitations
 - Tight budget (excluding original equipment purchases, ~\$4k)

Lessons Learned

- Transferring PID control between different systems can be challenging
- Sometimes you have to rip off the band-aids
 - Technical debt does not stop accumulating and it accrues interest
 - Patches and repairs can impede replacements
- Drawings lie
 - NC wiring to annunciator panel was missed on several revisions
 - Field inspection and tracing is the only real way to check

Lessons Learned

- Electronically-available data is great
 - Improved power calibrations
 - Alternate rod worth determination methods (inverse kinetics) and boost previous approaches
 - Expanded physics measurements (recent oscillator experiments)
- Staffing is now biggest limitation to operating hours

Acknowledgements

- Missouri S&T
 - Reactor Operators and Staff
 - Mines and Metallurgy Academy
- Department of Energy
 - DE-PS07-90ER12936
 - DE-PS07-91ER13058
 - DE-NE0000463

- USGS
- UMD

Questions

Extra Slides

Reactor Staff

Next Steps

Startup Channel/Wide Range

- Gamma-Metrics Wide Range
- Purchased 1992
- Significant testing in 1990s
- Failed preamp, plasma displays
- No Thermo Fisher support, but Paragon?
- Do we just abandon?

Next Steps Synchronization and Timing

- Residential alarm clock
- No DST support, battery backup
- Masterclock GMR5000
 - Can be Stratum 1
 - Sync all datastreams
 - Experiment timing support
- Network/switching install

Other Projects

Pool Height Measurement

- Current approach
 - Measuring stick mounted to skimmer
 - Power calibration uses dial indicators and floats
- Next system?
 - High-precision ultrasonic
 - Realtime data -> recorders

Bridge Accelerometer

- No current system
- Rod drop time tests
 - Conducted using microphone and significant amount of setup
 - Accelerometer could report impact to PLC

Improved Reactor Control System

			Driv	e Positic	on			
Ca	. Locked		Set Value		Shim Rar	nge Set	Home	
	Rod 1	0.000 in	24.750	Set	12.500	Z	ero	
	Rod 2	0.000 in	24.300	Set	12.500	Ze	ero	
	Rod 3	0.000 in	24.000	Sel	12.500	Ze	ro	
	Reg Rod	0.000 in	24.060	Set		Ze	ro	
			Dri	ve Speed	ł			
		Rod Speed	d Cutout	A	ccel	Decel		
	Rod 1	1200 rpm	Read In the	20	000	20000	Set	
	Rod	2 1200 rpm		20	000	20000	Set	
	Reg Ro	3 1192 rpm	n 10 rpm	2	00	2000	Set	
			Clo	ock Adjust		Setting	15	
	Help	06/02/23	16:03:37 E	0+ D-	M+ M-	0 sec	Return	

Improved Reactor Control System

