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Muclear Science

User Facilities

MIT Research Reactor (MITR)

» Part of interdepartmental Nuclear Reactor Laboratory

» Built on the MIT campus in 1958, upgraded in 1976

» 6 MW, - the 2" largest university reactor in U.S.
» Light water-cooled, heavy water-reflected

» Operates 24/7, up to 10-week cycles
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> Detailed MCNP modeling
> Extensive experimental validations
> Criticality (shim bank height) search

> Tracking rhomboid-shaped fuel

elements being rotated and/or flipped

J

I I I I
I I Massachusetts Institute of Technology

B
[=]
[=]
o

Reactivity Worth (mp)
N w
o o
(=] o
5] 5]

MITR Modeling & Fuel Management *@

Experiment_5.7MW - - MCODE_5.7MW

P e Sainint
Faatis ‘ ‘

4 ‘ ‘ ‘ :

J— | | | |

to - MITR start-up

/J 3 3 3 3 3

o 1 2 3 a4 s

Time (EFPD)

Power Distribution in MITR Core

4/19



s

> Detailed MCNP modeling
> Extensive experimental validations
> Criticality (shim bank height) search

> Tracking rhomboid-shaped fuel
elements being rotated and/or flipped

|

I I I I
I I Massachusetts Institute of Technology

MITR Modeling & Fuel Manag

6000

5000

4000

3000

2000

Reactivity Worth (mp)

1000

ement ‘@

Experiment_5.7MW - - MCODE_5.7MW

==
6':,/ : : : H

4 ‘ | | |
F— | | | |
' - MITR start-up
1 2 3 4 5

Time (EFPD)

Power Distribution in MITR Core

5/19



Background @

> During recent years, U.S. Nuclear Regulation Commission (NRC) enhances
the criticality safety regulations, emphasis being placed on the validation
requirements for the corresponding neutronics calculations.

> In the past two years, there are four criticality studies being required to
the Criticality Officer for analyzing multiple MITR facilities with
fissionable material involved:
. Wet Storage Systems (Spent Fuel Pool and Wet Storage Ring)
Il.  Special Nuclear Material Vault
. Exponential Graphite Pile (Storage and Operation)

> Most existing criticality reports (if there is any) for the above mentioned
facilities are out dated and lack of sufficient technical details

> There are needs to perform up-to-date calculations for the license
renewal (and/or accommodate the new regulation requirements)
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Objectives @

1. Technical: There is a clear trend that NRC pushed to implement
neutronics validations for the calculation results, where newer versions
of ANSI/ANS Standards (Series 8) is particularly requested to be followed.
How other Research Reactors accommodate this request?

2. Administrative: At least at MITR, there is no specific/clear funding source
supporting criticality safety analysis and validation report.
How other Research Reactors solve the financial issue?
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Criticality Safety Analyses *@

1. Wet Storage Systems (Spent Fuel Pool and Wet Storage Ring)
2. Special Nuclear Material Vault

3. Exponential Graphite Pile (Storage and Operation Configurations)

All cases shall satisfy the MITR technical specifications, i.e., keﬂ shall be less than 0.90
(NRC limit is 0.95) with sufficient safety margins, by considering double contingency —
typically over (or double) batching and light-water flooding.
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Wet Storage Systems

\ > NRC issued a Generic Letter, asking reactors to

address degradation of neutron-absorbing
materials in wet storage systems for reactor fuel

> We were trying to demonstrate our wet storage
systems are able to maintain sub-criticality
without any neutron-absorbing materials
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Wet Storage Ring — Modeling

1) No neutron-absorbing materials
(i.e., cadmium liners for the MITR case)
are included in the MCNP model.
This is a very conservative assumption,
since it is highly unlikely that
cadmium is degraded to zero level.

2) No structural components, such as depleted shim
blades, metallic racks, storage containers, and etc., are
taken into account. There is only full density (room
temperature) light-water surrounding the fuel elements
in the MCNP model. This is also a conservative
assumption, since it will result in higher k.

3) All fresh fuel elements are used in the calculations.
Such an approach is again on the conservative side,
since additional fissile materials are included.

{ Results: 0.70496 1 0.00060 }
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Spent Fuel Pool — Modeling

0.81219 + 0.00070

ISEmReN 0.77633 + 0.00057
E——

| Distance(d) | Results

0.77678 £ 0.00042

0.77933 £ 0.00065
122.00em (Min)| 0.81340 £ 0.00074
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Loading Configurations

25 — Full Fuel Elements Loading 0.96533 + 0.00057

24 — 1 Central Element Out 0.90794 + 0.00057

23 -1 Central + 1 Neighboring Elements Out [RoE:yE{oEAoNo0]0Ly,

21 -1 Central + 3 Neighboring Elements Out Ry IyEAoKo0[o[5y]

21 - 0 Central + 4 Neighboring Elements Out [ovzti RN 0ky,
0.77633 £ 0.00057
13 — 12 Corner Elements (3 each) Out 0.87151 £ 0.00061

9 — Form a 3x3 Square 0.82541 + 0.00068




Special Nuclear Material Vault ‘@

> Special nuclear material inventory started to build-up since 1960s.

> No criticality safety analysis was required for the past several license renewals
(every 10 years) until the most recent one in 2016.
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SNM Vault — Modeling
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Fuel Slug Storage — Modeling

[ “Neutronically Optimal” Storage Configuration ]

——Light water environment Heavy water environment
1
3 x 21 Pattern 21 x 21 Pattern 0.9

g
0.8
0.7
0.6
25 30 35 40 45 50

Center-to-center Distance Between Slugs (mm)

“Realistic”

65 x 5 Pattern Storage
Configuration

65 x 4 Pattern .
v Results: 0.55541 + 0.00030 (light-water)
0.68889 * 0.00030 (heavy-water)
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Graphite Pile — Modeling

[ “Front Face” (Vertical Cross-section) ]

[ “Side Face” ]
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0.84821 + 0.00014
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Neutron Doses — Pedestal Source
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Neutron Doses — Central Source
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Summary and Discussion @

2.

Summary: Several criticality safety analyses for MITR facilities have been
presented. All cases satisfy MITR technical specifications, i.e., k.« less
than 0.90 (NRC limit is 0.95) with sufficient safety margins, by
considering double contingency.

Technical: There is a clear trend that NRC pushed to implement
neutronics validations for the calculation results, where newer versions
of ANSI/ANS Standards (Series 8) is particularly requested to be followed.
How other Research Reactors accommodate this request?

Administrative: At least at MITR, there is no specific/clear funding source
supporting criticality safety analysis and validation report.
How other Research Reactors solve the financial issue?
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