MANTRA Experiment and the INL Experiment Design Process

Thomas Maddock Gilles Youinou

ww.inl.gov

Introduction

<u>Measurement of Actinide</u> <u>Neutronic Transmutation RA</u>tes

- MANTRA is an NSUF Experiment that was awarded in 2010
- Description and Status of the MANTRA Experiment
- Explanation of the the INL design process

Proposal — Objective

- Infer effective neutron capture cross-sections of actinides of interest for reactor physics in fast and epithermal spectra (a few fission products are also considered)
- Consistency of the fast and epithermal data (i.e. same samples, same fabrication protocols, same PIE protocols, same experimentalists, etc...)

Proposal — Facilities

INL Processes

Experiments Life-Cycle Process

Design

- Isotope will be contained in an aluminum vial
- Each vial is placed in a stainless steel rodlet
- 78 rodlets total
 - 21 to 24 isotopes per capsule
 - 4 rodlets with flux wires
 - U-235, Co, Ni, Ti, Cu, Fe
- 3 capsules
 - 25 rodlets in boron filtered capsules
 - 28 rodlets in cadmium filtered capsules
- 3 different neutron filter baskets
 - Thin Boron filter
 - Thick Boron filter
 - Cadmium filter

Design — **Boron Filters**

- Ceradyne was contracted to make Boron Carbide pellets
 - Enriched to 70% B-10
 - Boron had to be precision ground to size
 - 6 month lead time
- Boron pellets arrived about 16 months after order was placed.
- He pressurizes the basket making structural analysis much more difficult.

Fabrication — Specimens

- The INL Analytical Laboratory purified the samples.
- Impurities were measured using ICP-MS

Isotopes		
Ru-101	Th-232	Pu-241
Rh-103	U-233	Pu-242
Pd-105	U-235	Pu-244
Cs-133	U-236	Am-241
Nd-143	U-238	Am-243
Nd-145	Np-237	Cm-244
Sm-149	Pu-239	Cm-248
Eu-153	Pu-240	

Fabrication — Rodlets

Fabrication — Capsules

Fabrication — Neutron Filters

Experiment Assembly

- Isotope
- Vial
- Rodlet
- Capsule
- Basket
- Beryllium Reflector

Irradiation

Before Insertion

- Engineering Safety Assurance Packagae (ESAP)
- Safety Oversight Review Committee (SORC Review)

After Insertion

 Transfer experiment to canal to decay

Prepare experiment for shipping

Shipping Irradiated Capsules to MFC

Results

What's Next?

- Dissolve specimens from last capsule
- Perform MC-ICPMS measurements at INL
- Ship specimens to ATLAS
- Measure transmutation products and calculate cross sections

