

PyNIC: Python-Based Neutron Interaction Calculator

Greg Moffitt 8/7/14

2014 TRTR Conference, Reed College, Portland, OR

Outline

- Development of NAA Pre-calculator
- PyNIC code
- TRIGA Reactor Info and Irradiation ports
- MCNP6 Simulations of University of Utah TRIGA reactor
- PyNIC Code Benchmarking
- Future Work

Development of a NAA Pre-calculator

- Neutron activation analysis (NAA) is performed in the University of Utah TRIGA reactor (UUTR) for a wide range of samples
- Accurate pre-calculations leads to safe irradiations where dose is limited and activities are maintained in a range for counting on HPGe detectors

Python-Based Neutron Interaction Calculator (PyNIC)

$$A_{D}(t) = \varphi(\sigma_{p})m\left(\frac{N_{A}}{A_{m}}\right)A_{\%}(1 - e^{-\lambda_{D}t_{irr}})e^{-\lambda_{D}t_{decay}}$$

- Entire neutron absorption crosscross section included for each built-in nuclide
- Calculates the activity across the entire neutron energy spectrum of a neutron source
- Calculates the dose rate of an irradiated sample from gamma rays at 1 ft
- Currently contains 240 nuclides
- Once validated, PyNIC can be applied to any neutron energy spectrum

 φ – neutron flux (n/(cm²*s) σ_p – radiative capture cross section of parent isotope (cm²) m – mass of sample (g);

 N_A – Avogadro's number;

 A_m – atomic mass (g/mole),

- A_% atomic abundance ratio
- *t_{irr} irradiation time (sec)*
- t_{decav} decay time (sec)
- $A_D(t)$ activity of daughter isotope (Bq)
- λ_D decay constant of daughter isotope (s⁻¹)

PyNIC GUI: Irradiation Parameters

- GUI developed to facilitate the use of PyNIC by any user regardless of programming experience
 - Allows students to prepare their own NAA irradiations with final approval by reactor supervisor
- User enters/selects sample mass, irradiation time, decay time, and neutron beam

74		tk	
Neutron Interaction Simulation Tool, version 1.00			
Sample Mass:	0.5	(g)	
Irradiation time:	5	(minutes)	
Decay time:	1	(minutes)	
Neutron Beam:	UUTR FNIF - 1 kW UUTR FNIF - 10 kW UUTR FNIF - 90 kW UUTR TI - 1 kW UUTR TI - 10 kW UUTR TI - 30 kW UUTR TI - 50 kW UUTR TI - 70 kW UUTR TI - 90 kW UUTR CI - 90 kW		

PyNIC GUI: Sample Nuclide Selection

- User selects the nuclides present in the sample
 - Selects up to 10 different nuclides
- User enters the percent mass abundance of each nuclide

74		tk		
Neutron Interaction Simulation Tool, version 1.00				
Sample Mass:	0.5	(g)		
Irradiation time:	5	(minutes)		
Decay time:	1	(minutes)		
Neutron Beam:	UUTR FNIF - 1 kW UUTR FNIF - 10 kW UUTR FNIF - 90 kW UUTR TI - 1 kW UUTR TI - 10 kW UUTR TI - 30 kW UUTR TI - 30 kW UUTR TI - 50 kW UUTR TI - 70 kW UUTR TI - 90 kW			
Nuclide #1:	none H-1 H-2 He-3 Li-6 Li-7 Be-9 B-10 B-11 C	Percent mass abundance in sample:	100	%

PyNIC: Running Calculations

Generate MCNPX HPGe Input Files

Run MCNPX HPGe Input File

Run MCNPX HPGe Instant Input File

Generate HPGe Instant Report

- The "Perform Calculations" button calculates the activity and dose rate for the user specified irradiation parameters and nuclides
 - Prints activity and dose rate calculations to command prompt
 - Generates a report of activity, dose rate, 5 most abundant gamma emissions from daughter product decay, prompt gamma emission rates and gamma ray energies

PyNIC: MCNPX Gamma Spectrum Simulations

Perform Calculations		Generate MCNPX HPGe Input Files	Run MCNPX HPGe Input File	Run MCNPX HPGe Instant Input File	Generate HPGe Instant Report	
----------------------	--	---------------------------------	---------------------------	-----------------------------------	------------------------------	--

- The remaining buttons are for generating and running an MCNPX HPGe detector input based on the predicted gamma emissions from the activated sample
 - Creates input file
 - Runs file (MCNPX must be installed)
 - Parses MCNPX output file and plots gamma spectrum

2014 TRTR Conference, Reed College, Portland, OR 8

Additional Features of PyNIC

- Prompt-gamma emissions from radiative neutron capture programmed into PyNIC for select nuclides
- Inelastic scattering gamma emission data programmed in for select nuclides
- Fission gamma emission data for ²³⁵U, ²³⁸U, and ²³⁹Pu
- Applications in the simulation of neutron interrogation of materials such as explosives or special nuclear material
- No benchmarking for prompt-gamma emissions currently being performed – future work

UUTR Irradiation Ports

- UUTR has 4 irradiation ports
 - Central Irradiator (CI)
 - Pneumatic Irradiator (PI)
 - Thermal Irradiator (TI)
 - Fast Neutron Irradiator
 Facility (FNIF)
- Reactor licensed to operate up to 100 kW
- TI flux of 7.3x10¹¹ n/(cm^{2*}s)
 (as simulated in MCNP6)

University of Utah TRIGA Reactor

2014 TRTR Conference, Reed College, Portland, OR 10

MCNP6 Simulation of UUTR

- The neutron energy spectrum and fluence simulated in MCNP6
- 2620 tally bins from 0 to 10 MeV for neutron fluence tally (F4:n)
- PyNIC has a neutron crosssection processor that can handle any neutron energy bin structure
 - User can make energy bin structure as fine or as course as needed

PyNIC Benchmarking

HPGe detector with Canberra lead and copper shielding

- Benchmarking being performed through NAA experiments performed in the thermal irradiator port in the UUTR
- Materials irradiated
 - Pure nickel wire samples
 - NIST coal fly ash standard
 - NIST Montana soil standard
- Samples counted on a HPGe detector

Future Work

- Additional NAA experiments in UUTR
- Add ability to perform post calculations to get starting material concentration
- Validate for prompt gamma analysis
- Add secondary decay daughter product gamma emissions

Acknowledgements

- This research is being performed using funding received from DOE through the Integrated University Program
- Tatjana Jevremovic
- Tristalee Williams
- Ryan Schow
- Steve Burnham

