

IRIR

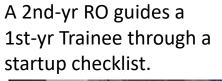
Nuclear Analysis of Reed Core 49 with Python-Scripted Templating of MCNP Code

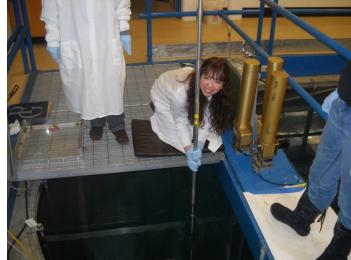
Patrick J. Park (he/him) Technician | Applied Physics pjp2136@columbia.edu

Reed College Research Reactor, Portland, OR For the National Organization of Test, Research, and Training Reactors October 20, 2021

Introduction

- MCNP work at NIST for past 2 summers, PI: Dagistan Sahin, the next presenter :)
- Senior Reactor Operator
- Finished BA Physics '21, Reed College in 3 yrs
- Currently BS Applied Physics '23 for 2 yrs at Columbia University through Reed-Columbia Combined Plan Program





Roadmap

- Features of Reed MCNP model
- Reed Automated Neutronics Engine
- Lessons Learned from
 - Modeling
 - Results analysis

A 4th-yr SRO removes a fuel element from the core for inspection

What is MCNP?

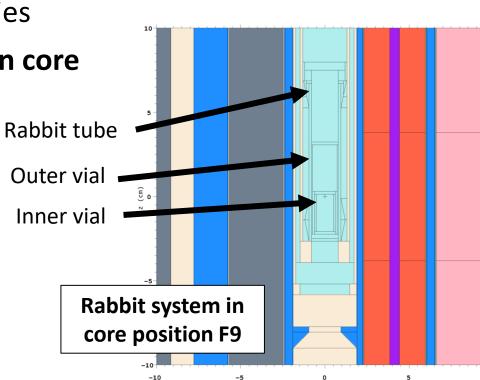
• <u>Monte Carlo N-Particle code encodes the 3D parametric equations that inscribe the core geometry and materials, then runs various nuclear calculations</u>

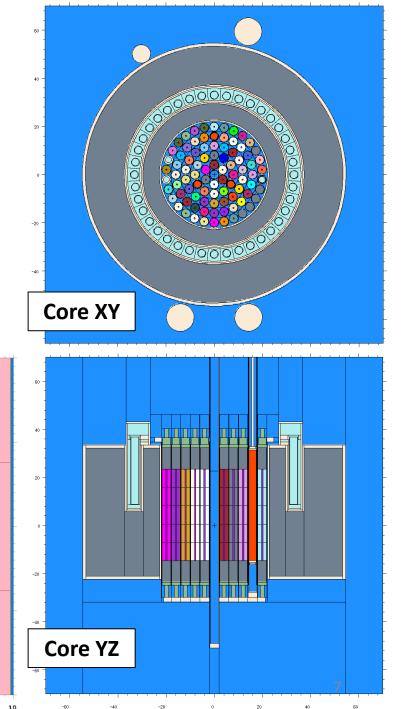
Godiva critica c CELL CARDS	1			
10 100 -18.7	74 -1	imp:n=1		
20 0	+1	imp:n=0	Cell 20	Cell 10
c SURFACE CAR 1 so 8.74				Material 100 o =18.74 g/cc imp:n=1
c DATA CARDS				
kcode 1000	1.0 10	50		
ksrc 0.0 0.	0.0			surface 1
m100 92235	-0.9473			
92238	-0.0527			

What is MCNP? What is a Neutronics Analysis?

- <u>Monte Carlo N-Particle code encodes the 3D parametric equations that inscribe the core geometry and materials, then runs various nuclear calculations</u>
- A standard series of nuclear calculations to predict performance and behaviors of a reactor
- Regularly completed as part of SAR, 50.59 screen, re-licensing
- TRIGA neutronics are well-known, but still necessary and good for student practice

Motivations


- MCNP 5 analysis of old Al-core in 2010 by Oregon State (OSTR) undergraduate for 2011 refueling
- Violation for not doing neutronics analysis/CFR 50.59 screen for the *post-refueled* SS-core
- Analysis for new SS-core completed in 2011-12
- No raw data remaining from new analysis


Reed MCNP Model Features

- High fidelity core geometry
 - Exact core components
 - Sample tubes in irradiation facilities
 - Core neutron detectors
- Burnup for individual fuel elements
- ENDF 8 data libraries
- Cold but NOT clean core

LEGE

y (cm)

Reed Automated Neutronics Engine (RANE)

- Automates MCNP input file writing for specific tests
- Uses Jinja2 package to have Python "fill in the blanks" of a MCNP template file

	2186	c 412	11 -	SS cla	ad (TØS210D2	210) universe	
densities	2187	с					
uensities	2188	411101	105	-7.85	312300	-312301 -311	.302
	2189	411102	102	{{h2o_	_density}}	312300 -3	12301

• Ex: rod heights

• Ex: material

5239	c pz sur	rfaces	5	
5240	с			
5241	812301	pz	{{62.8153+0.38*safe_height}}	<pre>\$ top of control rod</pre>
5242	812302	pz	{{62.0533+0.38*safe_height}}	<pre>\$ top of main section</pre>

• Ex: water material card (temperature-dependent)

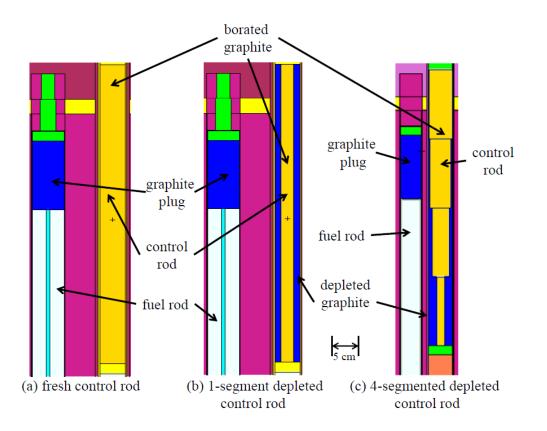
5605	m102	{{ h_mats }}
5606		{{
5607	С	
5608	mt102	{{ h2o_mt_lib }}

Automated Plotting

	1_ambe_xy.png	1_ambe_yz.png	1_ambe_zoomed yz.png	1_controlrod_xy. png	1_controlrod_yz. png	1_core_comp_xy. png	1_core_comp_yz.	1_core_load_xy.p ng
	1_core_load_yz.p	1_core_xy.png	1_core_yz.png	1_ir192_xy.png	1_ir192_yz.png	1_ir192_zoomed_ yz.png	1_lazysusan_xy.p ng	1_lazysusan_yz.p ng
PIL	1_rabbit_big_yz.p	1_rabbit_small_yz .png	1_rabbit_xy.png	1_reflector_comp _xy.png	1_reflector_comp _yz.png	1_reflector_comp _zoomed_xy.png	1_reflector_comp _zoomed_yz.png	1_reflector_load_ xy.png
	1_reflector_load_ yz.png	1_reflector_load_ zoomed_xy.png	1_reflector_load_ zoomed_yz.png	1_reflector_xy.pn g	1_reflector_yz.pn	1_reflector_zoom ed_xy.png	1_reflector_zoom ed_yz.png	

What RANE does:

- Xming plot commands
- Export to PS file
- Convert to TIFF using GhostScript
- Convert to PNGs using PIL


Pa	REEI			
E.	REEL		I F	(+H)

Lessons Learned from Modeling and Analysis

Model: Boron Carbide Poison

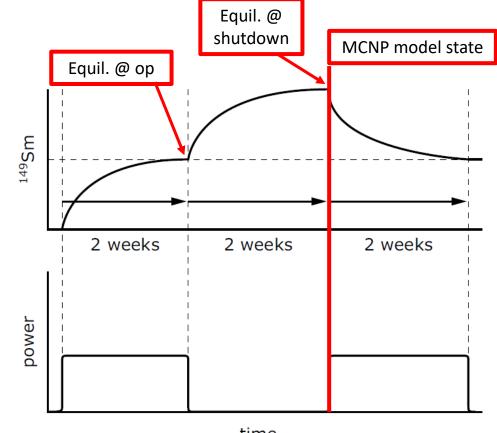
- Raising/lowering control rods is primary method of controlling reactor power
- More power that the control rod "sees"
 → more burnup of rod poison
- Problems with 2010 analysis:
 - Circa 2010, OSTR had 1260 MW-days vs. Reed had 64 MW-days of power
 - Assumes identical burnup to OSTR, severely overestimates Reed rod burnup
 - Models "burnt up" boron as stainless steel, not carbon

Rod burnup is modeled in MCNP by reducing decreasing boron densities and radii

Figure from 2013 GSTR Neutronics Analysis, N. Shugart

Model: Boron Carbide Poison

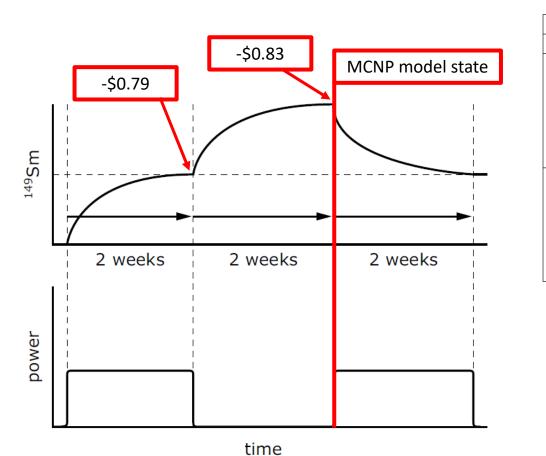
	B₄C Properties		
Facility/Analysis	Mass density (g/cc)	Radius (cm)	Notes
RRR nominal	1.81220	1.53	As reported in RRR 2010 analysis
RRR 2010 report	1.72066	1.30	Based on OSTR; discrepancy in report vs. code
RRR 2010 code	1.68590	1.30	Burned-up B4C accidentally uses SS not graphite
RRR 2021	1.80772	1.52	3.8% of OSTR value, scaled to RRR:OSTR burnup
UUTR	2.52	1.00, 0.20	Safe and shim are thicker than reg
MUTR	2.51	1.52	
UCI	2.30		
GSTR	1.72066	0.68872-1.69544	Step-like burnup, min-max radii
OSTR	1.72066	1.30	Experimentally determined for 2007 SAR
Chemically pure	2.52		


Table 5. Comparison of non-transient control rod poison (B₄C) properties between TRIGA analyses. Chemically pure B₄C has density 2.52 g/cc.

Lesson Learned: Make sure assumptions are scaled properly to your specific facility!

Model: Samarium Poison

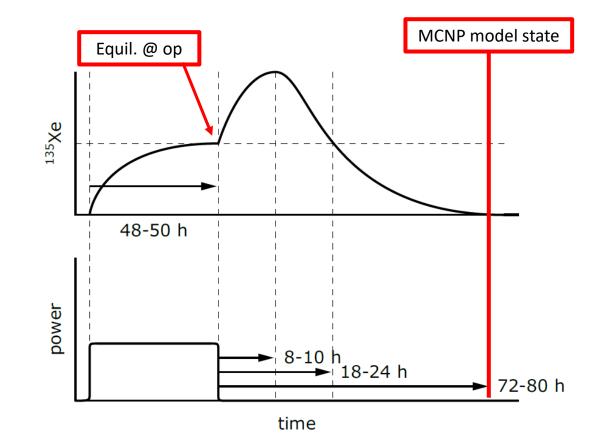
- Sm-149 is a neutron poison naturally produced from fission
- Does not completely disappear from core
 → must consider in MCNP model


time

Sm-149 history over time and power

Model: Samarium Poison

Table 7. Calculated average equilibrium Sm-149 poison values in Core 49at 250 kW and post-250 kW shutdown.


Properties	Value
Thermal neutron absorption cross section	41,500 b
Averages at equilibrium during 250 kW operation	
Time to reach	14.3 days
Concentration	3.458 E+16 at/cm ³
Atoms in core	1.059 E+21 at
Mass in core	2.579 E-01 g
Total reactivity worth in core	-\$0.79
Averages at equilibrium after shutdown from 250 kW (modeled in MCNP)	
Time to reach	~14 days
Concentration	3.644 E+16 at/cm ³
Atoms in core	1.116 E+21 at
Mass in core	2.762 E-01 g
Total reactivity worth in core	-\$0.83

Problem: Not sure if Reed actually reached operational equilibrium

Model: Xenon Poison

- Xe-135 also poison from fission
- Eventually decays away in core → NOT considered in MCNP model
- But fun and good for ops training to know Xe-135 effects

Model: Xenon Poison

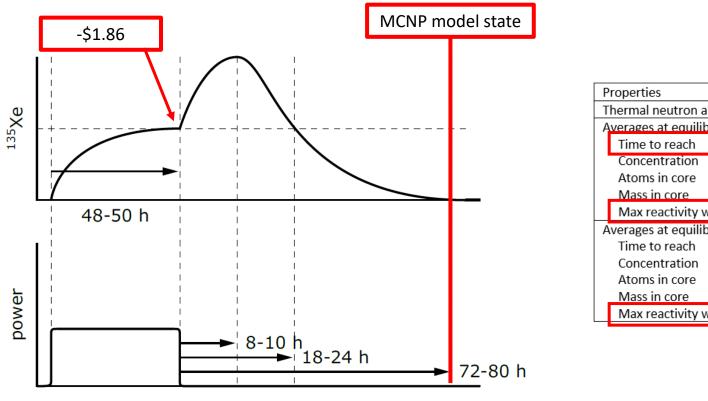


Table 6. Calculated average equilibrium Xe-135 poison values in Core 49 at 250 kW and shutdown.

Properties	Value	
Thermal neutron absorption cross section	2.6 E+6 b	
Averages at equilibrium during 250 kW operation		
Time to reach	56 hrs	
Concentration	1.241 E+15	at/cm ³
Atoms in core	3.802 E+15	at
Mass in core	8.524 E-03	g
Max reactivity worth in core	-\$1.86	
Averages at equilibrium during 5 W operation		
Time to reach	56 hrs	
Concentration	3.941 E+10	at/cm ³
Atoms in core	1.208 E+15	at
Mass in core	2.708 E-07	g
Max reactivity worth in core	-\$6.02 E-0	5

Lesson Learned: Magnitude of equilibrium Xe > equilibrium Sm

Results: Moderator Temp. Coef.

- Measures reactivity change per temperature change in moderator
- In MCNP code: need to change density + cell, cross-section, thermal scattering library temps
- For cross-section (XS) temperature interpolation: "MCNP pseudo-material interpolation"
- For thermal scattering (S(a,B), "S alpha beta"): discrete without makxsf code

ENDF/B-VIII.0 Library Code	Temp [K]	Temp [°C]
h-h2o.40t	294	21
h-h2o.42t	300	27
h-h2o.43t	324	51
h-h2o.44t	350	77
h-h20.45t	374	101

Results: Moderator Temp. Coef.

	Moderator Temp. Coef. [\$/K]		
Facility/Analysis	value	$\pm 1\sigma$	Notes
RRR 2010	-0.0057		
RRR 2021	+0.0132	0.0015	Uses interpolated xs libraries
UUTR	-0.0133		Only measured at 293, 600 K (20, 327 C)
MUTR	0.0000		Determined negligible and bounded around 0
UCI	-0.0085		Averaged from 20 to 700 C
GSTR	+0.0120	0.0020	Uses interpolated xs, $S(\alpha, \beta)$ libraries
OSTR	-0.0072		
WSUR			Not calculated

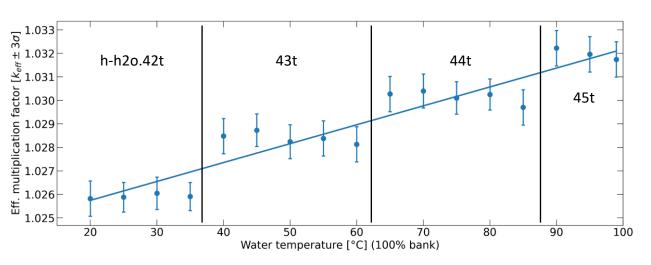
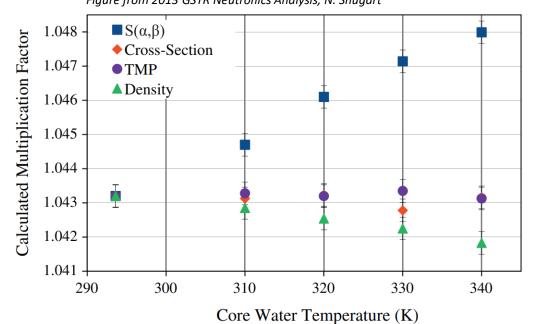
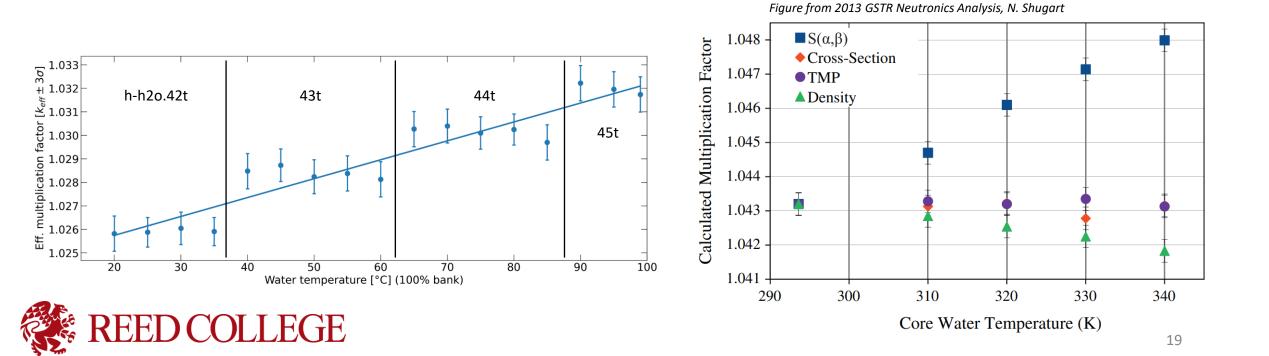



Figure from 2013 GSTR Neutronics Analysis, N. Shugart



Results: Moderator Temp. Coef.

- My calculations yield "jagged" <u>upward</u> step
- Continuous density + cell (TMP), cross-section (xs) temperature values have *negative effect*
- Discrete *thermal scattering* S(a,B) temperature has *positive effect*
- Next step: use *maxksf* for continuous S(a,B) to produce smooth upward line

Lesson Learned: Make sure to use multiple S(a,B) libraries along domain to show full effects

Summary

- Automated scripts for easy replication
- Maintain good documentation of reasoning for assumptions
- Make sure to scale assumptions properly when borrowing from other facilities
- Xenon > Samarium reactivity
- Most Sm produced during operation, not shutdown
- Perturb ALL parameters related to a variable, lest you miss an effect like from S(a,B)

Acknowledgements

Toria Ellis, Reactor Operations Manager, Reed College

Jerry Newhouse, Director, Reed College

Malcolm McCarthy, Physics '18, now Aerotest Reactor

Luke Gilde, Maryland University Training Reactor

Robert Schickler, Oregon State University

Questions?

