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Cross Sectlon View of Core (I\/ICNP Model)
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Development of LEU Core CD35 Design

oo | o
ent Design CD35

Feasibility Study Design
(FSD): 24 variable

: _ Plate 1 9 9
thickness U-10Mo foils T Plate 2 12 12
! . . u |
with minimum 10 mil clad ~ ESSEEe Plate 3 5 e
. Plates 4-22 18 20
+ .
(Al + Zr interlayer) (mil) T e s
Element redesigned with Plate 24 17 N/A
nominal clad thickness Plate 1 20 7.5
S . Clad Plate 2 13 16
> 12 mil SR Plate 3 10 14
Fuel design optimized for |5 D C 10 12
lifeti d Plate 23 10 16
lrelime and power Plate 24 16 N/A
peaking Plate Plate 1 49 44
“CD35” has 23 plates; Thick Plates 2-22 o P
_ as £J plates, ICKNESS = JUNwE 38 49
thicker minimum plate (mil) Plate 24 49 N/A
thickness than FSD; Coolant g:a““e: 12 . gg 99555
. . oolan anneis £-

same Ilfefume. as HEU Channel Channels 6-19 92 92
Note: Plate 1 is the innermost plate, Thickness Channels 20-23 92 93
Plate 23 or 24 is the outermost plate. (mil) Channel 24 92 955
N AAUTCR Channel 25 95 N/A
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Current HEU and Proposed LEU Core CD35
Fuel Cycles

Parameter Current HEU Fuel Proposed LEU Fuel - CD35
Weekly — replace all 8 fuel Weekly — replace all 8 fuel
Refueling: elements; fuel elements are elements; fuel elements are
used in 18-20 core loadings used in 18-20 core loadings
EOC Core MWd ~640 MWd core with ~765 MWd core with
(control blades equilibrium xenon equilibrium xenon
full out):
150 MWd/element 180 MWd/element
< 1.6E+21 peak fissions/cc < 3.4E+21 peak fissions/cc
Maximum (< 43 at% peak burnup) (< 44 at% peak burnup)
burnup:
HEU Technical Specification
limit is 2.3E+21 peak fissions/cc
22 elements/year at 10 MW 22 elements/yearat 12 MW
Fuel Cycle: 32 fuel elements in active 32 fuel elementsin active
fuel cycle fuel cycle

NvR 1
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Heat Flux (W/cm?)

Power Distributions for Steady-State
FI and CHF Analyses

* As elements reach end-of-life, peak heat flux becomes less
* However, flow instability (FI) could occur at lower power in channel of
depleted element; fuel swelling and oxide growth constricts coolant channel

Position X8 (174 MWd), Plate 23, Eq. Xe

Position X1 (0 MWd), Plate 23, No Xe
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Heat Flux (W/cm?)
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Position X1 (3 MWd), Plate 23, Eq. Xe
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Power Distributions for Steady-State
FI and CHF Analyses

Heat Flux [W/em"2)
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Greatest CD35 hot stripe heat flux in case for:
Reference core

Equilibrium Xe

Samples in Flux Trap

Control Blades A&D depleted and
positioned 1 inch above Blades B&C
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LEU Core CD35 Flow Instability Power at 75 psia

LEU Core CD35 Flow Instability Power for Pressurizer Pressure at 75 psia

25 : :
Margin to LSSS
Parameter LSSS Margin® —+-120F
20 | Power, MW 15.0 2.10 Max. =140 F
Flow, gpbm 3300 520 Po —4-145 F
Inlet Temp., F | 145 176 |- ;/ < 160F
= Pressure, psia 75 13.8 / / _
=3 15 1 *Other 3 of 4 Parameters at LSSS. = ——180F
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Loss of Flow Accident
Normal Flow Path Accident Flow Path
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Loss of Coolant Accident
Start of Accident Coolant Left in Primary
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CD35 LOF and LOC Accidents
Fuel Plate 23 Centerline Temperature

w
o))
o]

4 Change in
slope is due

w
I
D

%

to scram.

w
o
o]

—Cold-Leg LOCA
\ ——LOFA (8-inch break)
——Hot-Leg LOCA

MNJ

0
D

N
o))
o]

| N —
\ —
N

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time after Pipe Break, s

MNJ
I
D

Temperature, F

MNJ

)
D

N
o
o]

[HEY
0
D

[
(0)]
(o]

2 AU R

TRTR Meeting — September 23-26, 2013

=N - = . 3
> Bringing quality nuclear research, education
and Service to a global community

University of Missouri (MURR); St Louis, MO




" CD35 LOF and LOC Accidents
Coolant Channel 23 Flow Velocity
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" LOF and LOC Accidents Using RELAP
Peak Fuel Temperatures

LE T
Accident HEU Core at U Core at emperature

10 MW 12 MW? Delta®
LOCA - Cold Leg 342 °F 347 °F +5 °F
LOCA - Hot Leg 254 °F 310 °F +56 °F
LOFA 273 °F 323 °F +50 °F
Notes:

1. Core inlet water temperature set at LSSS of 155 °F.
2. Core inlet water temperature set at LSSS of 145 °F.

3. Increase in temperatures is a result of a 20% increase in power and lower fuel
plate heat conductance.
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Fuel Conversion affect on Beryllium Lifetime

« Beryllium is replaced about every 8 years (~26,000 MWD)
with current operating schedule (151 Hrs/wk) using HEU
fuel at 10 MW

 Fuel conversion to LEU fuel at 12 MW will alter thermal
heating and swelling-induced stresses

« MCNP analyses indicate an increase in the average gas
concentration in the peak region from 1,530 ppm to 1,690
ppm (10.5 % greater)

« MCNP analyses indicate a decrease in the average heating
rate in the peak region from 4.65 w/cm? to 3.63 w/cm? (24 %
less)

 Based on this information, what is the overall affect?
Will work with ATR & HFIR to better estimate it
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CD35 with Borated Sideplates in Odd-numbered Element Positions
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Transition LEU Core CD35 - Fuel Cycle

Weekly LEU Core Elements Boron Side Plate Standard Side Plate BOC Core
Cores (Boron/Standard) LEU Fuel Elements LEU Fuel Elements MWDs
C1->C14 6/2 12 8 0-435
C15 - C27 4/4 12 16 340 - 640
C28 — C49 2/6 12 22 514 - 720

End of Transition Fuel Cycle—Normal LEU Fuel Cycle

C50 + 0/8 0 32 632 Ave.

Boron side plate fuel elements contain 1300 ppm (0.13%) of B-10.

MURR will average retiring two fuel elements at 180 MWd burnup due to
reactivity limitations and adding two new elements eleven times per
year.
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®  Potential Transition Fuel Cycle Cores
Compared to the Intended Routine Cycle

Core k-effective at Equilibrium Xe, Control Blades at 23"
REBUS-DIF3D Fuel Cycle Simulation Results
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= =(CD35 Average Equil. Xe k-efffor Equilibrium Cycles

m CD35 Startup Cores with 1300 ppm B in Transition Element Sideplates

1.01 ==
Last cycle for transition elements: 49

Average k4 for equilibrium cycles = 0.99436
w Average k_ for startup cycles 15-49 = 0.99534
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Summary of Recent Accomplishments

« Completed alternate LEU fuel element design CD35 for

thicker clad and thicker plates than feasibility study design.

« Completed steady-state safety basis for CD35 LEU core at

12 MW:

> J. Stillman, et al., “Technical Basis in Support of the Conversion of

the University of Missouri Research Reactor (MURR) Core from
Highly-Enriched to Low-Enriched Uranium — Core Neutron Physics,”
September 2012

E. E. Feldman, et al., “Technical Basis in Support of the Conversion
of the University of Missouri Research Reactor (MURR) Core from
Highly-Enriched to Low-Enriched Uranium — Steady-State Thermal-
Hydraulic Analysis,” January 2013

L. Foyto, et al., “Draft Chapter 4, Reactor Description, Safety
Analysis Report, Highly-Enriched to Low-Enriched Uranium
Conversions,” January 2013
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Summary of Recent Accomplishments

* Increasing formality of information exchange with FD Pillar:

» J. Stiliman, et al., “Conceptual Design Parameters for MURR LEU
U-Mo Fuel Conversion Design Demonstration Experiment,”
September 2012

» J. Stillman, et al., “Irradiation Experiment Conceptual Design
Parameters for MURR LEU U-Mo Fuel Conversion,” March 2013

» Rev 1 completed (June) to describe impacts of tolerances &
uncertainties

« Completing Phase 1 of Transient and Accident Analyses for
LEU core CD35 as required by Chapter 13 of the LEU
Conversion SAR — MCNP

« Completing Phase 1 of Ancillary Analyses
» Effect of LEU at 12 MW on Beryllium Lifetime
» Transition Element Design and Strategy for CD35 LEU Fuel Cycle
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