



Hermes Demo Reactor, Modeling and Startup Physics Testing Synergism

NADER SATVAT, FANNY VITULLO, RICHARD HERNANDEZ
30 SEPTEMBER 2024



#### Overview of Kairos Power

- Nuclear energy engineering, design, and manufacturing company singularly focused on the commercialization of the fluoride salt-cooled high-temperature reactor (FHR)
  - Founded in 2016
  - ~400 Employees
- Novel approach to nuclear development that includes iterative hardware demonstrations and in-house manufacturing to achieve disruptive cost reduction and provide true cost certainty
- Schedule driven by US demonstration by 2030 (or earlier) and rapid deployment ramp in 2030s
- Cost targets set to be competitive with natural gas in the US electricity market

#### Kairos Power Headquarters





## Kairos Power Path to Commercialization





# **Hermes Reactor Description**

# Licensing following non-power regulations in 10 CFR 50, using guidance in NUREG-1537

- Graphite reflector
  - Machined graphite blocks
  - Penetrations for flow, control rods, instrumentation, etc.
- Flibe coolant.
  - High temperature, low pressure system (550-650°C, <2 bars)</li>
- Pebble bed core:
  - 4-cm diameter graphite pebbles
  - Fuel: ~6 g U in TRISO, < 20% U-235</li>
  - Pebbles move through the core in 30-50 days
  - Reinserted or discharged once design burnup limit is reached
- Core design methodology described in "KP-FHR Core Design and Analysis Methodology" (KP-TR-017) and recent submission of Core Design Topical Report to USNRC on 3/4/24.



# Hermes Nuclear Design

- Iterative Multiphysics Modeling to provide rapid and informed system design updates
- Coupled Methodology tools for safety analysis
  - Reactor kinetics parameters
  - Control rod worth and shutdown margin
  - Reactivity coefficients
  - Power distribution
- Design verification and Method validation through operational testing
  - 1/M approach to criticality via fuel loading and via control rods
  - Zero & Lower power testing
  - Power ascension and system/plant responses





#### **Figures of Merit:**

#### **Neutronics**

- Power profile
- Radiation transport

#### Thermal Hydraulics

- Temperature profiles Flow characteristics

#### Pebble Dynamics

- Pebble motion
- Packing fraction

# Hermes Startup Narrative



# Hermes Initial Fuel Load



### Hermes Initial Fuel Load

- Sensitivity studies on critical mass (pebble count) to ensure a safe and conservative approach to criticality
- FOAK reactor fuel load: 1/M count rates from neutron detectors at multiple axial, radial and azimuthal positions
  - In-vessel source range monitors (SRMs)
  - Ex-vessel guarded fission chambers (GFCs)
- After first criticality, comparison with predictions and model adjustments are performed for benchmarking analysis and design.

#### **Criticality via Fuel Loading**



# **Hermes Low Power**



## Hermes Startup Physics Testing

#### Zero-power

- Approach to critical via 1/M banked rods operation
- Control rod worth measurements (positive period and rod drop)
- Isothermal coefficient measurement via external heaters

100 kW

- Point-of-adding-heat (POAH) search
- Flux wire irradiation
- Verification of Xe equilibrium calculations

0.5 MW 1 MW

- Power coefficient measurement at thermal and Xe equilibrium
- Low-power detector calibration

