# Flux Profiling Using a Neutron Absorbing Cocktail

Donald Wall Washington State University September 21, 2010



# Rationale: The WSU 1 MW TRIGA conversion reactor was converted from HEU to LEU in 2008.

The core has been extensively modeled at GA, PNNL and WSU, but experimental measurements of flux profiles and neutron energy distribution were unavailable.



Use of multiple flux monitors allows deconvolution of the neutron energy spectrum into three general energy bins: thermal, epithermal, and fast (>1 MeV) since each reaction is sensitive to a different range of neutron energies.

The thermal cross sections and resonance integrals for the reactions also have different ratios.

| Reaction                                 | Cross section | Resonance<br>integral |  |  |  |
|------------------------------------------|---------------|-----------------------|--|--|--|
| <sup>58</sup> Fe(n,γ) <sup>59</sup> Fe   | 1.3           | 1.2                   |  |  |  |
| <sup>59</sup> Co(n,γ) <sup>60</sup> Co   | 37            | 74                    |  |  |  |
| <sup>63</sup> Cu(n,γ) <sup>64</sup> Cu   | 4.5           | 5.0                   |  |  |  |
| <sup>197</sup> Au(n,γ) <sup>198</sup> Au | 98.7          | 1550                  |  |  |  |
| <sup>235</sup> U fission average (barns) |               |                       |  |  |  |
| <sup>46</sup> Ti(n,p) <sup>46</sup> Sc   | 0.001211      |                       |  |  |  |
| <sup>47</sup> Ti(n,p) <sup>47</sup> Sc   | 0.02812       |                       |  |  |  |
| <sup>48</sup> Ti(n,p) <sup>48</sup> Sc   | 0.0004696     |                       |  |  |  |
| <sup>54</sup> Fe(n,p) <sup>54</sup> Fe   | 0.1146        |                       |  |  |  |
| <sup>56</sup> Fe(n,p) <sup>56</sup> Fe   | 0.001645      |                       |  |  |  |

### Procedure:

Ti, Fe, Co, Cu, and Au standards were packaged in 1.5 mL heat sealed polyethylene vials, which were placed inside 18.5 mL vials.

The samples were irradiated at measured distances from the bottom of the core.

Samples were irradiated for 30 minutes in core position D8 or subjected to a \$2.00 pulse

Cooling time of 4 hours to 24 hours

Samples were counted for 2 – 15 minutes on an energy and efficiency calibrated Canberra HpGe

# Flux monitors consisted of Ti, Fe, Co, Cu, and Au.









## Ti (n,p) Sc Reaction





#### Counting Efficiency as a Function of Energy



Efficiency











|         |         | Devicer       | 1.005+00         |              |               |             |         |       |           |       |
|---------|---------|---------------|------------------|--------------|---------------|-------------|---------|-------|-----------|-------|
|         |         | Power         | 1.00E+06         |              |               |             |         |       |           |       |
|         |         | total flux    | 5.30E+11         | 0.53         |               |             |         |       |           |       |
|         |         | epi fraction  | 0.11             |              |               |             |         |       |           |       |
|         |         | fast fraction | 0.15             |              |               |             |         |       |           |       |
|         |         |               |                  |              |               |             |         |       |           |       |
|         |         |               |                  |              |               |             |         |       |           |       |
|         |         |               |                  |              |               | theoretical |         |       | product   |       |
| Product | Target  |               |                  |              |               |             |         |       |           |       |
| nuclide | nuclide | grams         | thermal activity | epi activity | fast activity | total       | therm % | epi % | half life |       |
| Fe-59   | Fe-58   | 0.0481        | 285              | 33           |               | 318         |         |       | 45.1      | days  |
| Co-60   | Co-59   | 0.000505      | 676              | 167          |               | 843         | 80.2%   | 19.8% | 5.27E+00  | years |
| Cu-64   | Cu-63   | 1.29E-05      | 4816             | 661          |               | 5477        | 87.9%   | 12.1% | 12.701    | hours |
| Au-198  | Au-197  | 8.53E-07      | 649              | 1259         |               | 1908        | 34.0%   | 66.0% | 2.695     | days  |
| Sc-46   | Ti-46   | 0.1413        |                  |              | 2.43          |             |         |       | 83.81     | days  |
| Sc-47   | Ti-47   | 0.1413        |                  |              | 1271.9        |             |         |       | 3.349     | days  |
| Sc-48   | Ti-48   | 0.1413        |                  |              | 1620.6        |             |         |       | 43.7      | hours |
| Mn-54   | Fe-54   | 0.0481        |                  |              | 12.8          |             |         |       | 312.1     | days  |
| Mn-56   | Fe-56   | 0.0481        |                  |              | 333068.8      |             |         |       | 2.578     | hours |

# Fast neutron cross sections were set at the 7 MeV values for best fit for the <sup>56</sup>Fe(n,p)<sup>56</sup>Mn reaction











# Pulse Fluence\*

# Thermal neutron fluence

| Reaction                                 | Fluence                 |
|------------------------------------------|-------------------------|
| <sup>58</sup> Fe(n,γ) <sup>59</sup> Fe   | 2.28 × 10 <sup>14</sup> |
| <sup>59</sup> Co(n,γ) <sup>60</sup> Co   | 2.44 × 10 <sup>14</sup> |
| <sup>63</sup> Cu(n,γ) <sup>64</sup> Cu   | 2.38 × 10 <sup>14</sup> |
| <sup>197</sup> Au(n,γ) <sup>198</sup> Au | 2.37 × 10 <sup>14</sup> |
| Epithermal fluence                       | 7.51 × 10 <sup>13</sup> |

\* \$2.00 pulse

# Pulse Fluence

# Thermal neutron fluence

| Reaction                               | Fluence                 |
|----------------------------------------|-------------------------|
| <sup>47</sup> Ti(n,p) <sup>47</sup> Sc | 2.53 × 10 <sup>13</sup> |
| <sup>48</sup> Ti(n,p) <sup>48</sup> Sc | 2.96 × 10 <sup>13</sup> |
| <sup>54</sup> Fe(n,p) <sup>54</sup> Fe | 2.78 × 10 <sup>13</sup> |
| <sup>56</sup> Fe(n,p) <sup>56</sup> Fe | 3.00 × 10 <sup>13</sup> |

### **Conclusions and Future Work**

Fast fluences during pulsing represent about 10% of the thermal fluence value, vs. about 15% for steady-state operation. The difference is likely due to choice of fast reaction cross-sections. This will be reevaluated.

Pulsing epithermal ratios were determined with cadmium shielding. Examination of the ratio method vs. Cd shield is ongoing.

